Do you want to publish a course? Click here

Real-time observation of the isothermal crystallization kinetics in a deeply supercooled liquid

192   0   0.0 ( 0 )
 Added by Marco Zanatta
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Below the melting temperature $T_m$ crystals are the stable phase of typical elemental or molecular systems. However, cooling down a liquid below $T_m$, crystallization is anything but inevitable. The liquid can be supercooled, eventually forming a glass below the glass transition temperature $T_g$. Despite their long lifetimes and the presence of strong barriers that produces an apparent stability, supercooled liquids and glasses remain intrinsically metastable state and thermodynamically unstable towards the crystal. Here we investigated the isothermal crystallization kinetics of the prototypical strong glassformer GeO$_2$ in the deep supercooled liquid at 1100 K, about half-way between $T_m$ and $T_g$. The crystallization process has been observed through time-resolved neutron diffraction for about three days. Data show a continuous reorganization of the amorphous structure towards the alpha-quartz phase with the final material composed by crystalline domains plunged into a low-density, residual amorphous matrix. A quantitative analysis of the diffraction patterns allows determining the time evolution of the relative fractions of crystal and amorphous, that was interpreted through an empirical model for the crystallization kinetics. This approach provides a very good description of the experimental data and identifies a predator-prey-like mechanism between crystal and amorphous, where the density variation acts as blocking barrier.



rate research

Read More

A novel liquid-liquid phase transition has been proposed and investigated in a wide variety of pure substances recently, including water, silica and silicon. From computer simulations using the Stillinger-Weber classical empirical potential, Sastry and Angell [1] demonstrated a first order liquid-liquid transition in supercooled silicon, subsequently supported by experimental and simulation studies. Here, we report evidence for a liquid-liquid critical end point at negative pressures, from computer simulations using the SW potential. Compressibilities exhibit a growing maximum upon lowering temperature below 1500 K and isotherms exhibit density discontinuities below 1120 K, at negative pressure. Below 1120 K, isotherms obtained from constant volume-temperature simulations exhibit non-monotonic, van der Waals-like behavior signaling a first order transition. We identify Tc ~ 1120 +/- 12 K, Pc -0.60 +/- 0.15 GPa as the critical temperature and pressure for the liquid-liquid critical point. The structure of the liquid changes dramatically upon decreasing the temperature and pressure. Diffusivities vary over 4 orders of magnitude, and exhibit anomalous pressure dependence near the critical point. A strong relationship between local geometry quantified by the coordination number, and diffusivity, is seen, suggesting that atomic mobility in both low and high density liquids can usefully be analyzed in terms of defects in the tetrahedral network structure. We have constructed the phase diagram of supercooled silicon. We identify the lines of compressibility, density extrema (maxima and minima) and the spinodal which reveal the interconnection between thermodynamic anomalies and the phase behaviour of the system as suggested in previous works [2-9]
Development of reliable interatomic potentials is crucial for theoretical studies of relationship between chemical composition, structure and observable properties in glass-forming metallic alloys. Due to ambiguity of potential parametrization procedure, some crucial properties of the system, such as crystallization stability or symmetry of the ground state crystal phase, may not be correctly reproduced in computer simulations. Here we address this issue for ${rm Cu_{64.5}Zr_{35.5}}$ alloy described by two modifications of embedded atom model potential as well as by textit{ab initio} molecular dynamics. We observe that, at low supercooling, both models provide very similar liquid structure, which agrees with that obtained by textit{ab initio} simulations. Hoverer, deeply supercooled liquids demonstrate essentially different local structure and so different crystallization stability. The system, which demonstrate more pronounced icosahedral sort-range order, is more stable to crystallization that is in agreement with Frank hypothesis.
85 - Ludovic Berthier 2020
A theoretical treatment of deeply supercooled liquids is difficult because their properties emerge from spatial inhomogeneities that are self-induced, transient, and nanoscopic. I use computer simulations to analyse self-induced static and dynamic heterogeneity in equilibrium systems approaching the experimental glass transition. I characterise the broad sample-to-sample fluctuations of salient dynamic and thermodynamic properties in elementary mesoscopic systems. Findings regarding local lifetimes and distributions of dynamic heterogeneity are in excellent agreement with recent single molecule studies. Surprisingly broad thermodynamic fluctuations are also found, which correlate well with dynamics fluctuations, thus providing a local test of the thermodynamic origin of slow dynamics.
A bulk metallic glass forming alloy is subjected to shear flow in its supercooled state by compression of a short rod to produce a flat disc. The resulting material exhibits enhanced crystallization kinetics during isothermal annealing as reflected in the decrease of the crystallization time relative to the non-deformed case. The transition from quiescent to shear-accelerated crystallization is linked to strain accumulated during shear flow above a critical shear rate $dotgamma_capprox 0.3$ s$^{-1}$ which corresponds to P{e}clet number, $Pesimmathcal{O}(1)$. The observation of shear accelerated crystallization in an atomic system at modest shear rates is uncommon. It is made possible here by the substantial viscosity of the supercooled liquid which increases strongly with temperature in the approach to the glass transition. We may therefore anticipate the encounter of non-trivial shear-related effects during thermoplastic deformation of similar systems.
We report a quantitative experimental study of the crystallization kinetics of supercooled quantum liquid mixtures of para-hydrogen (pH$_2$) and ortho-deuterium (oD$_2$) by high spatial resolution Raman spectroscopy of liquid microjets. We show that in a wide range of compositions the crystallization rate of the isotopic mixtures is significantly reduced with respect to that of the pure substances. To clarify this behavior we have performed path-integral simulations of the non-equilibrium pH$_2$-oD$_2$ liquid mixtures, revealing that differences in quantum delocalization between the two isotopic species translate into different effective particle sizes. Our results provide first experimental evidence for crystallization slowdown of quantum origin, offering a benchmark for theoretical studies of quantum behavior in supercooled liquids.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا