Do you want to publish a course? Click here

Linear Aggregation in Tree-based Estimators

376   0   0.0 ( 0 )
 Added by Theo Saarinen
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Regression trees and their ensemble methods are popular methods for nonparametric regression: they combine strong predictive performance with interpretable estimators. To improve their utility for locally smooth response surfaces, we study regression trees and random forests with linear aggregation functions. We introduce a new algorithm that finds the best axis-aligned split to fit linear aggregation functions on the corresponding nodes, and we offer a quasilinear time implementation. We demonstrate the algorithms favorable performance on real-world benchmarks and in an extensive simulation study, and we demonstrate its improved interpretability using a large get-out-the-vote experiment. We provide an open-source software package that implements several tree-based estimators with linear aggregation functions.



rate research

Read More

109 - Ines Wilms , Jacob Bien 2021
High-dimensional graphical models are often estimated using regularization that is aimed at reducing the number of edges in a network. In this work, we show how even simpler networks can be produced by aggregating the nodes of the graphical model. We develop a new convex regularized method, called the tree-aggregated graphical lasso or tag-lasso, that estimates graphical models that are both edge-sparse and node-aggregated. The aggregation is performed in a data-driven fashion by leveraging side information in the form of a tree that encodes node similarity and facilitates the interpretation of the resulting aggregated nodes. We provide an efficient implementation of the tag-lasso by using the locally adaptive alternating direction method of multipliers and illustrate our proposals practical advantages in simulation and in applications in finance and biology.
In many domains, data measurements can naturally be associated with the leaves of a tree, expressing the relationships among these measurements. For example, companies belong to industries, which in turn belong to ever coarser divisions such as sectors; microbes are commonly arranged in a taxonomic hierarchy from species to kingdoms; street blocks belong to neighborhoods, which in turn belong to larger-scale regions. The problem of tree-based aggregation that we consider in this paper asks which of these tree-defined subgroups of leaves should really be treated as a single entity and which of these entities should be distinguished from each other. We introduce the false split rate, an error measure that describes the degree to which subgroups have been split when they should not have been. We then propose a multiple hypothesis testing algorithm for tree-based aggregation, which we prove controls this error measure. We focus on two main examples of tree-based aggregation, one which involves aggregating means and the other which involves aggregating regression coefficients. We apply this methodology to aggregate stocks based on their volatility and to aggregate neighborhoods of New York City based on taxi fares.
Markov chain Monte Carlo (MCMC) is widely used for Bayesian inference in models of complex systems. Performance, however, is often unsatisfactory in models with many latent variables due to so-called poor mixing, necessitating development of application specific implementations. This paper introduces posterior-based proposals (PBPs), a new type of MCMC update applicable to a huge class of statistical models (whose conditional dependence structures are represented by directed acyclic graphs). PBPs generates large joint updates in parameter and latent variable space, whilst retaining good acceptance rates (typically 33%). Evaluation against other approaches (from standard Gibbs / random walk updates to state-of-the-art Hamiltonian and particle MCMC methods) was carried out for widely varying model types: an individual-based model for disease diagnostic test data, a financial stochastic volatility model, a mixed model used in statistical genetics and a population model used in ecology. Whilst different methods worked better or worse in different scenarios, PBPs were found to be either near to the fastest or significantly faster than the next best approach (by up to a factor of 10). PBPs therefore represent an additional general purpose technique that can be usefully applied in a wide variety of contexts.
Wildlife monitoring for open populations can be performed using a number of different survey methods. Each survey method gives rise to a type of data and, in the last five decades, a large number of associated statistical models have been developed for analysing these data. Although these models have been parameterised and fitted using different approaches, they have all been designed to model the pattern with which individuals enter and exit the population and to estimate the population size. However, existing approaches rely on a predefined model structure and complexity, either by assuming that parameters are specific to sampling occasions, or by employing parametric curves. Instead, we propose a novel Bayesian nonparametric framework for modelling entry and exit patterns based on the Polya Tree (PT) prior for densities. Our Bayesian non-parametric approach avoids overfitting when inferring entry and exit patterns while simultaneously allowing more flexibility than is possible using parametric curves. We apply our new framework to capture-recapture, count and ring-recovery data and we introduce the replicated PT prior for defining classes of models for these data. Additionally, we define the Hierarchical Logistic PT prior for jointly modelling related data and we consider the Optional PT prior for modelling long time series of data. We demonstrate our new approach using five different case studies on birds, amphibians and insects.
We consider a pseudo-marginal Metropolis--Hastings kernel $P_m$ that is constructed using an average of $m$ exchangeable random variables, as well as an analogous kernel $P_s$ that averages $s<m$ of these same random variables. Using an embedding technique to facilitate comparisons, we show that the asymptotic variances of ergodic averages associated with $P_m$ are lower bounded in terms of those associated with $P_s$. We show that the bound provided is tight and disprove a conjecture that when the random variables to be averaged are independent, the asymptotic variance under $P_m$ is never less than $s/m$ times the variance under $P_s$. The conjecture does, however, hold when considering continuous-time Markov chains. These results imply that if the computational cost of the algorithm is proportional to $m$, it is often better to set $m=1$. We provide intuition as to why these findings differ so markedly from recent results for pseudo-marginal kernels employing particle filter approximations. Our results are exemplified through two simulation studies; in the first the computational cost is effectively proportional to $m$ and in the second there is a considerable start-up cost at each iteration.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا