Do you want to publish a course? Click here

What Stabilizes the Intermediate Structure of an Amorphous Alloy?

164   0   0.0 ( 0 )
 Added by Peter Harrowell
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the results of simulation studies of a model binary metal-metalloid alloy in which we characterize and explain the local coordination structure, the intermediate structure associated with the packing of these coordination polyhedra and the thermal stability of the various structural elements of this model amorphous solid.



rate research

Read More

A disordered material that cannot relax to equilibrium, such as an amorphous or glassy solid, responds to deformation in a way that depends on its past. In experiments we train a 2D athermal amorphous solid with oscillatory shear, and show that a suitable readout protocol reveals the shearing amplitude. When shearing alternates between two amplitudes, signatures of both values are retained only if the smaller one is applied last. We show that these behaviors arise because individual clusters of rearrangements are hysteretic and dissipative, and because different clusters respond differently to shear. These roles for hysteresis and disorder are reminiscent of the return-point memory seen in ferromagnets and many other systems. Accordingly, we show how a simple model of a ferromagnet can reproduce key results of our experiments and of previous simulations. Unlike ferromagnets, amorphous solids disorder is unquenched; they require training to develop this behavior.
We report results of molecular dynamics simulations of amorphous ice for pressures up to 22.5 kbar. The high-density amorphous ice (HDA) as prepared by pressure-induced amorphization of Ih ice at T=80 K is annealed to T=170 K at various pressures to allow for relaxation. Upon increase of pressure, relaxed amorphous ice undergoes a pronounced change of structure, ranging from the low-density amorphous ice (LDA) at p=0, through a continuum of HDA states to the limiting very high-density amorphous ice (VHDA) regime above 10 kbar. The main part of the overall structural change takes place within the HDA megabasin, which includes a variety of structures with quite different local and medium-range order as well as network topology and spans a broad range of densities. The VHDA represents the limit to densification by adapting the hydrogen-bonded network topology, without creating interpenetrating networks. The connection between structure and metastability of various forms upon decompression and heating is studied and discussed. We also discuss the analogy with amorphous and crystalline silica. Finally, some conclusions concerning the relation between amorphous ice and supercooled water are drawn.
The enhancement of mobility at the surface of an amorphous alloy is studied using a combination of molecular dynamic simulations and normal mode analysis of the non-uniform distribution of Debye-Waller factors. The increased mobility at the surface is found to be associated with the appearance of Arrhenius temperature dependence. We show that the transverse Debye-Waller factor exhibits a peak at the surface. Over the accessible temperature range, we find that the bulk and surface diffusion coefficients obey the same empirical relationship with the respective Debye-Waller factors. Extrapolating this relationship to lower T, we argue that the observed decrease in the constraint at the surface is sufficient to account for the experimentally observed surface enhancement of mobility.
X-ray measurements reveal a crystalline monolayer at the surface of the eutectic liquid Au_{82}Si_{18}, at temperatures above the alloys melting point. Surface-induced atomic layering, the hallmark of liquid metals, is also found below the crystalline monolayer. The layering depth, however, is threefold greater than that of all liquid metals studied to date. The crystallinity of the surface monolayer is notable, considering that AuSi does not form stable bulk crystalline phases at any concentration and temperature and that no crystalline surface phase has been detected thus far in any pure liquid metal or nondilute alloy. These results are discussed in relation to recently suggested models of amorphous alloys.
143 - Matthieu Wyart 2009
The effect of coordination on transport is investigated theoretically using random networks of springs as model systems. An effective medium approximation is made to compute the density of states of the vibrational modes, their energy diffusivity (a spectral measure of transport) and their spatial correlations as the network coordination $z$ is varied. Critical behaviors are obtained as $zto z_c$ where these networks lose rigidity. A sharp cross-over from a regime where modes are plane-wave-like toward a regime of extended but strongly-scattered modes occurs at some frequency $omega^*sim z-z_c$, which does not correspond to the Ioffe-Regel criterion. Above $omega^*$ both the density of states and the diffusivity are nearly constant. These results agree remarkably with recent numerical observations of repulsive particles near the jamming threshold cite{ning}. The analysis further predicts that the length scale characterizing the correlation of displacements of the scattered modes decays as $1/sqrt{omega}$ with frequency, whereas for $omega<<omega^*$ Rayleigh scattering is found with a scattering length $l_ssim (z-z_c)^3/omega^4$. It is argued that this description applies to silica glass where it compares well with thermal conductivity data, and to transverse ultrasound propagation in granular matter.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا