Do you want to publish a course? Click here

Properties of Convex Optimal Power Flow Model Based on Power Loss Relaxation

130   0   0.0 ( 0 )
 Added by Zhao Yuan
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We derive the branch ampacity constraint associated to power losses for the convex optimal power flow (OPF) model based on the branch flow formulation. The branch ampacity constraint derivation is motivated by the physical interpretation of the transmission line {Pi}-model and practical engineering considerations. We rigorously prove and derive: (i) the loop constraint of voltage phase angle, required to make the branch flow model valid for meshed power networks, is a relaxation of the original nonconvex alternating current optimal power flow (o-ACOPF) model; (ii) the necessary conditions to recover a feasible solution of the o-ACOPF model from the optimal solution of the convex second-order cone ACOPF (SOC-ACOPF) model; (iii) the expression of the global optimal solution of the o-ACOPF model providing that the relaxation of the SOC-ACOPF model is tight; (iv) the (parametric) optimal value function of the o-ACOPF or SOC-ACOPF model is monotonic with regarding to the power loads if the objective function is monotonic with regarding to the nodal power generations; (v) tight solutions of the SOC-ACOPF model always exist when the power loads are sufficiently large. Numerical experiments using benchmark power networks to validate our findings and to compare with other convex OPF models, are given and discussed.



rate research

Read More

82 - Zhao Yuan 2021
Optimal power flow (OPF) is the fundamental mathematical model in power system operations. Improving the solution quality of OPF provide huge economic and engineering benefits. The convex reformulation of the original nonconvex alternating current OPF (ACOPF) model gives an efficient way to find the global optimal solution of ACOPF but suffers from the relaxation gaps. The existence of relaxation gaps hinders the practical application of convex OPF due to the AC-infeasibility problem. We evaluate and improve the tightness of the convex ACOPF model in this paper. Various power networks and nodal loads are considered in the evaluation. A unified evaluation framework is implemented in Julia programming language. This evaluation shows the sensitivity of the relaxation gap and helps to benchmark the proposed tightness reinforcement approach (TRA). The proposed TRA is based on the penalty function method which penalizes the power loss relaxation in the objective function of the convex ACOPF model. A heuristic penalty algorithm is proposed to find the proper penalty parameter of the TRA. Numerical results show relaxation gaps exist in test cases especially for large-scale power networks under low nodal power loads. TRA is effective to reduce the relaxation gap of the convex ACOPF model.
Despite strong connections through shared application areas, research efforts on power market optimization (e.g., unit commitment) and power network optimization (e.g., optimal power flow) remain largely independent. A notable illustration of this is the treatment of power generation cost functions, where nonlinear network optimization has largely used polynomial representations and market optimization has adopted piecewise linear encodings. This work combines state-of-the-art results from both lines of research to understand the best mathematical formulations of the nonlinear AC optimal power flow problem with piecewise linear generation cost functions. An extensive numerical analysis of non-convex models, linear approximations, and convex relaxations across fifty-four realistic test cases illustrates that nonlinear optimization methods are surprisingly sensitive to the mathematical formulation of piecewise linear functions. The results indicate that a poor formulation choice can slow down algorithm performance by a factor of ten, increasing the runtime from seconds to minutes. These results provide valuable insights into the best formulations of nonlinear optimal power flow problems with piecewise linear cost functions, a important step towards building a new generation of energy markets that incorporate the nonlinear AC power flow model.
In recent years, the power systems research community has seen an explosion of novel methods for formulating the AC power flow equations. Consequently, benchmarking studies using the seminal AC Optimal Power Flow (AC-OPF) problem have emerged as the primary method for evaluating these emerging methods. However, it is often difficult to directly compare these studies due to subtle differences in the AC-OPF problem formulation as well as the network, generation, and loading data that are used for evaluation. To help address these challenges, this IEEE PES Task Force report proposes a standardized AC-OPF mathematical formulation and the PGLib-OPF networks for benchmarking AC-OPF algorithms. A motivating study demonstrates some limitations of the established network datasets in the context of benchmarking AC-OPF algorithms and a validation study demonstrates the efficacy of using the PGLib-OPF networks for this purpose. In the interest of scientific discourse and future additions, the PGLib-OPF benchmark library is open-access and all the of network data is provided under a creative commons license.
In this paper, we study the problem of exact community recovery in the symmetric stochastic block model, where a graph of $n$ vertices is randomly generated by partitioning the vertices into $K ge 2$ equal-sized communities and then connecting each pair of vertices with probability that depends on their community memberships. Although the maximum-likelihood formulation of this problem is discrete and non-convex, we propose to tackle it directly using projected power iterations with an initialization that satisfies a partial recovery condition. Such an initialization can be obtained by a host of existing methods. We show that in the logarithmic degree regime of the considered problem, the proposed method can exactly recover the underlying communities at the information-theoretic limit. Moreover, with a qualified initialization, it runs in $mathcal{O}(nlog^2n/loglog n)$ time, which is competitive with existing state-of-the-art methods. We also present numerical results of the proposed method to support and complement our theoretical development.
110 - Javad Mohammadi , Soummya Kar , 2014
The trend in the electric power system is to move towards increased amounts of distributed resources which suggests a transition from the current highly centralized to a more distributed control structure. In this paper, we propose a method which enables a fully distributed solution of the DC Optimal Power Flow problem (DC-OPF), i.e. the generation settings which minimize cost while supplying the load and ensuring that all line flows are below their limits are determined in a distributed fashion. The approach consists of a distributed procedure that aims at solving the first order optimality conditions in which individual bus optimization variables are iteratively updated through simple local computations and information is exchanged with neighboring entities. In particular, the update for a specific bus consists of a term which takes into account the coupling between the neighboring Lagrange multiplier variables and a local innovation term that enforces the demand/supply balance. The buses exchange information on the current update of their multipliers and the bus angle with their neighboring buses. An analytical proof is given that the proposed method converges to the optimal solution of the DC-OPF. Also, the performance is evaluated using the IEEE Reliability Test System as a test case.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا