No Arabic abstract
The recent discovery of Weyl fermions in solids enables exploitation of relativistic physics and development of a spectrum of intriguing physical phenomena. They are constituted of pairs of Weyl points with two-fold band degeneracy, which in principle can be hosted in any materials without inversion or time-reversal symmetry. However, previous studies of Weyl fermions have been limited exclusively to semimetals. Here, by combining magneto-transport measurements, angle-resolved photoemission spectroscopy, and band structure calculations, Weyl fermions are identified in an elemental semiconductor tellurium. This is mainly achieved by direct observation of the representative transport signatures of the chiral anomaly, including the negative longitudinal magnetoresistance and the planar Hall effect. Semiconductor materials are well suited for band engineering, and therefore provide an ideal platform for manipulating the fundamental Weyl fermionic behaviors. Furthermore, introduction of Weyl physics into semiconductors to develop Weyl semiconductors also creates a new degree of freedom for the future design of semiconductor electronic and optoelectronic devices.
Recent progress in understanding the electronic band topology and emergent topological properties encourage us to reconsider the band structure of well-known materials including elemental substances. Controlling such a band topology by external field is of particular interest from both fundamental and technological view point. Here we report the pressure-induced topological phase transition from a semiconductor to a Weyl semimetal in elemental tellurium probed by transport measurements. Pressure variation of the periods of Shubnikov-de Haas oscillations, as well as oscillations phases, shows an anomaly around the pressure theoretically predicted for topological phase transition. This behavior can be well understood by the pressure-induced band deformation and resultant band crossing effect. Moreover, effective cyclotron mass is reduced toward the critical pressure, potentially reflecting the emergence of massless linear dispersion. The present result paves the way for studying the electronic band topology in well-known compounds and topological phase transition by the external field.
The chiral crystal is characterized by a lack of mirror symmetry and an inversion center, resulting in the inequivalent right- and left-handed structures. In the noncentrosymmetric crystal structure, the spin and momentum of electrons are locked in the reciprocal space with the help of the spin-orbit interaction. To reveal the spin textures of chiral crystals, here we investigate the spin and electronic structure in p-type semiconductor elemental tellurium with a chiral crystal structure by using spin- and angle-resolved photoemission spectroscopy. Our data demonstrate that the highest valence band crossing the Fermi level has a spin component parallel to the electron momentum around the BZ corners. Significantly, we have also confirmed that the spin polarization is reversed in the crystal with the opposite chirality. The results indicate that the spin textures of the right- and left-handed chiral crystals are hedgehog-like, leading to unconventional magnetoelectric effects and nonreciprocal phenomena.
Magnetic Weyl fermions, which occur in magnets, have novel transport phenomena related to pairs of Weyl nodes, and they are, of both, scientific and technological interest, with the potential for use in high-performance electronics, spintronics and quantum computing. Although magnetic Weyl fermions have been predicted to exist in various oxides, evidence for their existence in oxide materials remains elusive. SrRuO3, a 4d ferromagnetic metal often used as an epitaxial conducting layer in oxide heterostructures, provides a promising opportunity to seek for the existence of magnetic Weyl fermions. Advanced oxide thin film preparation techniques, driven by machine learning technologies, may allow access to such topological matter. Here we show direct quantum transport evidence of magnetic Weyl fermions in an epitaxial ferromagnetic oxide SrRuO3: unsaturated linear positive magnetoresistance (MR), chiral-anomaly-induced negative MR, Pi Berry phase accumulated along cyclotron orbits, light cyclotron masses and high quantum mobility of about 10000 cm2/Vs. We employed machine-learning-assisted molecular beam epitaxy (MBE) to synthesize SrRuO3 films whose quality is sufficiently high to probe their intrinsic quantum transport properties. We also clarified the disorder dependence of the transport of the magnetic Weyl fermions, and provided a brand-new diagram for the Weyl transport, which gives a clear guideline for accessing the topologically nontrivial transport phenomena. Our results establish SrRuO3 as a magnetic Weyl semimetal and topological oxide electronics as a new research field.
Recent discovery of both gapped and gapless topological phases in weakly correlated electron systems has introduced various relativistic particles and a number of exotic phenomena in condensed matter physics. The Weyl fermion is a prominent example of three dimensional (3D), gapless topological excitation, which has been experimentally identified in inversion symmetry breaking semimetals. However, their realization in spontaneously time reversal symmetry (TRS) breaking magnetically ordered states of correlated materials has so far remained hypothetical. Here, we report a set of experimental evidence for elusive magnetic Weyl fermions in Mn$_3$Sn, a non-collinear antiferromagnet that exhibits a large anomalous Hall effect even at room temperature. Detailed comparison between our angle resolved photoemission spectroscopy (ARPES) measurements and density functional theory (DFT) calculations reveals significant bandwidth renormalization and damping effects due to the strong correlation among Mn 3$d$ electrons. Moreover, our transport measurements have unveiled strong evidence for the chiral anomaly of Weyl fermions, namely, the emergence of positive magnetoconductance only in the presence of parallel electric and magnetic fields. The magnetic Weyl fermions of Mn$_3$Sn have a significant technological potential, since a weak field ($sim$ 10 mT) is adequate for controlling the distribution of Weyl points and the large fictitious field ($sim$ a few 100 T) in the momentum space. Our discovery thus lays the foundation for a new field of science and technology involving the magnetic Weyl excitations of strongly correlated electron systems.
Topological quantum materials, including topological insulators and superconductors, Dirac semimetals and Weyl semimetals, have attracted much attention recently for their unique electronic structure, spin texture and physical properties. Very lately, a new type of Weyl semimetals has been proposed where the Weyl Fermions emerge at the boundary between electron and hole pockets in a new phase of matter, which is distinct from the standard type I Weyl semimetals with a point-like Fermi surface. The Weyl cone in this type II semimetals is strongly tilted and the related Fermi surface undergos a Lifshitz transition, giving rise to a new kind of chiral anomaly and other new physics. MoTe2 is proposed to be a candidate of a type II Weyl semimetal; the sensitivity of its topological state to lattice constants and correlation also makes it an ideal platform to explore possible topological phase transitions. By performing laser-based angle-resolved photoemission (ARPES) measurements with unprecedentedly high resolution, we have uncovered electronic evidence of type II semimetal state in MoTe2. We have established a full picture of the bulk electronic states and surface state for MoTe2 that are consistent with the band structure calculations. A single branch of surface state is identified that connects bulk hole pockets and bulk electron pockets. Detailed temperature-dependent ARPES measurements show high intensity spot-like features that is ~40 meV above the Fermi level and is close to the momentum space consistent with the theoretical expectation of the type II Weyl points. Our results constitute electronic evidence on the nature of the Weyl semimetal state that favors the presence of two sets of type II Weyl points in MoTe2.