Do you want to publish a course? Click here

Effectiveness of Distillation Attack and Countermeasure on Neural Network Watermarking

353   0   0.0 ( 0 )
 Added by Ziqi Yang
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

The rise of machine learning as a service and model sharing platforms has raised the need of traitor-tracing the models and proof of authorship. Watermarking technique is the main component of existing methods for protecting copyright of models. In this paper, we show that distillation, a widely used transformation technique, is a quite effective attack to remove watermark embedded by existing algorithms. The fragility is due to the fact that distillation does not retain the watermark embedded in the model that is redundant and independent to the main learning task. We design ingrain in response to the destructive distillation. It regularizes a neural network with an ingrainer model, which contains the watermark, and forces the model to also represent the knowledge of the ingrainer. Our extensive evaluations show that ingrain is more robust to distillation attack and its robustness against other widely used transformation techniques is comparable to existing methods.



rate research

Read More

113 - Franziska Boenisch 2020
Machine learning (ML) models are applied in an increasing variety of domains. The availability of large amounts of data and computational resources encourages the development of ever more complex and valuable models. These models are considered intellectual property of the legitimate parties who have trained them, which makes their protection against stealing, illegitimate redistribution, and unauthorized application an urgent need. Digital watermarking presents a strong mechanism for marking model ownership and, thereby, offers protection against those threats. The emergence of numerous watermarking schemes and attacks against them is pushed forward by both academia and industry, which motivates a comprehensive survey on this field. This document at hand provides the first extensive literature review on ML model watermarking schemes and attacks against them. It offers a taxonomy of existing approaches and systemizes general knowledge around them. Furthermore, it assembles the security requirements to watermarking approaches and evaluates schemes published by the scientific community according to them in order to present systematic shortcomings and vulnerabilities. Thus, it can not only serve as valuable guidance in choosing the appropriate scheme for specific scenarios, but also act as an entry point into developing new mechanisms that overcome presented shortcomings, and thereby contribute in advancing the field.
Protecting the Intellectual Property Rights (IPR) associated to Deep Neural Networks (DNNs) is a pressing need pushed by the high costs required to train such networks and the importance that DNNs are gaining in our society. Following its use for Multimedia (MM) IPR protection, digital watermarking has recently been considered as a mean to protect the IPR of DNNs. While DNN watermarking inherits some basic concepts and methods from MM watermarking, there are significant differences between the two application areas, calling for the adaptation of media watermarking techniques to the DNN scenario and the development of completely new methods. In this paper, we overview the most recent advances in DNN watermarking, by paying attention to cast it into the bulk of watermarking theory developed during the last two decades, while at the same time highlighting the new challenges and opportunities characterizing DNN watermarking. Rather than trying to present a comprehensive description of all the methods proposed so far, we introduce a new taxonomy of DNN watermarking and present a few exemplary methods belonging to each class. We hope that this paper will inspire new research in this exciting area and will help researchers to focus on the most innovative and challenging problems in the field.
To ensure protection of the intellectual property rights of DNN models, watermarking techniques have been investigated to insert side-information into the models without seriously degrading the performance of original task. One of the threats for the DNN watermarking is the pruning attack such that less important neurons in the model are pruned to make it faster and more compact as well as to remove the watermark. In this study, we investigate a channel coding approach to resist the pruning attack. As the channel model is completely different from conventional models like digital images, it has been an open problem what kind of encoding method is suitable for DNN watermarking. A novel encoding approach by using constant weight codes to immunize the effects of pruning attacks is presented. To the best of our knowledge, this is the first study that introduces an encoding technique for DNN watermarking to make it robust against pruning attacks.
In this work, we show how to jointly exploit adversarial perturbation and model poisoning vulnerabilities to practically launch a new stealthy attack, dubbed AdvTrojan. AdvTrojan is stealthy because it can be activated only when: 1) a carefully crafted adversarial perturbation is injected into the input examples during inference, and 2) a Trojan backdoor is implanted during the training process of the model. We leverage adversarial noise in the input space to move Trojan-infected examples across the model decision boundary, making it difficult to detect. The stealthiness behavior of AdvTrojan fools the users into accidentally trust the infected model as a robust classifier against adversarial examples. AdvTrojan can be implemented by only poisoning the training data similar to conventional Trojan backdoor attacks. Our thorough analysis and extensive experiments on several benchmark datasets show that AdvTrojan can bypass existing defenses with a success rate close to 100% in most of our experimental scenarios and can be extended to attack federated learning tasks as well.
DNN watermarking is receiving an increasing attention as a suitable mean to protect the Intellectual Property Rights associated to DNN models. Several methods proposed so far are inspired to the popular Spread Spectrum (SS) paradigm according to which the watermark bits are embedded into the projection of the weights of the DNN model onto a pseudorandom sequence. In this paper, we propose a new DNN watermarking algorithm that leverages on the watermarking with side information paradigm to decrease the obtrusiveness of the watermark and increase its payload. In particular, the new scheme exploits the main ideas of ST-DM (Spread Transform Dither Modulation) watermarking to improve the performance of a recently proposed algorithm based on conventional SS. The experiments we carried out by applying the proposed scheme to watermark different models, demonstrate its capability to provide a higher payload with a lower impact on network accuracy than a baseline method based on conventional SS, while retaining a satisfactory level of robustness.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا