Do you want to publish a course? Click here

Inclusive production of two rapidity-separated heavy quarks as a probe of BFKL dynamics

61   0   0.0 ( 0 )
 Added by Alessandro Papa
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

The inclusive photoproduction of two heavy quarks, separated by a large rapidity interval, is proposed as a new channel for the manifestation of the Balitsky-Fadin-Kuraev-Lipatov (BFKL) dynamics. The extension to the hadroproduction case is also discussed.



rate research

Read More

We propose a new process which probes the BFKL dynamics in the high energy proton-proton scattering, namely the forward Drell-Yan (DY) production accompanied by a backward jet, separated from the DY lepton pair by a large rapidity interval. The proposed process probes higher rapidity differences and smaller transverse momenta than in the Mueller-Navelet jet production. It also offers a possibility of measuring new observables like leptons angular distribution coefficients in the DY lepton pair plus jet production.
We study the decorrelation in azimuthal angle of Mueller-Navelet jets at hadron colliders within the BFKL formalism. We introduce NLO terms in the evolution kernel and present a collinearly-improved version of it for all conformal spins. We show how this further resummation has good convergence properties and is closer to the Tevatron data than a simple LO treatment. However, we are still far from a good fit. We offer estimates of these decorrelations for larger rapidity differences which should favor the onset of BFKL effects and encourage experimental studies of this observable at the LHC.
We show how single top production at the LHC can be used to discover (and characterize the couplings of) B quarks, which are an essential part of many natural models of new physics beyond the Standard Model. We present the B effective model and concentrate on resonant production via a colored anomalous magnetic moment. Generally, Bs preferentially decay into a single top quark produced in association with a W boson; thus, this production process makes associated single top production essential to B searches at the LHC. We demonstrate the background processes are manageable and the signal cross section is sufficient to yield a large signal significance even during the 7 TeV LHC run. Specifically, we show that B masses of 700 GeV or more can be probed. Moreover, if a B is found, then the chirality of its coupling can be determined. Finally, we present signal cross sections for several different LHC energies.
The single top quark final state provides sensitivity to new heavy resonances produced in proton-proton collisions at the Large Hadron Collider. Particularly, the single top plus quark final state appears in models with heavy charged bosons or scalars, or in models with flavor-changing neutral currents involving the top quark. The cross sections and final state kinematics distinguish such models from each other and from standard model backgrounds. Several models of resonances decaying to a single top quark final state are presented and their phenomenology is discussed.
A study of differential cross sections for the production of four jets in multi-Regge kinematics is presented, the main focus lying on azimuthal angle dependences. The theoretical setup consists in the jet production from a single BFKL ladder with a convolution of three BFKL Green functions, where two forward/backward jets are always tagged in the final state. Furthermore, the tagging of two further jets in more central regions of the detectors with a relative separation in rapidity from each other is requested. It is found, as result, that the dependence on the transverse momenta and the rapidities of the two central jets can be considered as a distinct signal of the onset of BFKL dynamics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا