No Arabic abstract
We present a method for the manufacturing of thin shells of glass, which appears promising for the development of active optics for future space telescopes. The method exploits the synergy of different mature technologies, while leveraging the commercial availability of large, high-quality sheets of glass, with thickness up to few millimeters. The first step of the method foresees the pre-shaping of flat substrates of glass by replicating the accurate shape of a mold via hot slumping technology. The replication concept is advantageous for making large optics composed of many identical or similar segments. After the hot slumping, the shape error residual on the optical surface is addressed by applying a deterministic sub-aperture technology as computer-controlled bonnet polishing and/or ion beam figuring. Here we focus on the bonnet polishing case, during which the thin, deformable substrate of glass is temporary stiffened by a removable holder. In this paper, we report on the results so far achieved on a 130 mm glass shell case study.
A coronagraphic starlight suppression system situated on a future flagship space observatory offers a promising avenue to image Earth-like exoplanets and search for biomarkers in their atmospheric spectra. One NASA mission concept that could serve as the platform to realize this scientific breakthrough is the Large UV/Optical/IR Surveyor (LUVOIR). Such a mission would also address a broad range of topics in astrophysics with a multiwavelength suite of instruments. The apodized pupil Lyot coronagraph (APLC) is one of several coronagraph design families that the community is assessing as part of NASAs Exoplanet Exploration Program Segmented aperture coronagraph design and analysis (SCDA) team. The APLC is a Lyot-style coronagraph that suppresses starlight through a series of amplitude operations on the on-axis field. Given a suite of seven plausible segmented telescope apertures, we have developed an object-oriented software toolkit to automate the exploration of thousands of APLC design parameter combinations. This has enabled us to empirically establish relationships between planet throughput and telescope aperture geometry, inner working angle, bandwidth, and contrast level. In parallel with the parameter space exploration, we have investigated several strategies to improve the robustness of APLC designs to fabrication and alignment errors. We also investigate the combination of APLC with wavefront control or complex focal plane masks to improve inner working angle and throughput. Preliminary scientific yield evaluations based on design reference mission simulations indicate the APLC is a very competitive concept for surveying the local exoEarth population with a mission like LUVOIR.
Thin slumped glass foils are considered good candidates for the realization of future X-ray telescopes with large effective area and high spatial resolution. However, the hot slumping process affects the glass strength, and this can be an issue during the launch of the satellite because of the high kinematical and static loads occurring during that phase. In the present work we have investigated the possible use of Gorilla glass (produced by Corning), a chemical tempered glass that, thanks to its strength characteristics, would be ideal. The un-tempered glass foils were curved by means of an innovative hot slumping technique and subsequently chemically tempered. In this paper we show that the chemical tempering process applied to Gorilla glass foils does not affect the surface micro-roughness of the mirrors. On the other end, the stress introduced by the tempering process causes a reduction in the amplitude of the longitudinal profile errors with a lateral size close to the mirror length. The effect of the overall shape changes in the final resolution performance of the glass mirrors was studied by simulating the glass foils integration with our innovative approach based on glass reinforcing ribs. The preliminary tests performed so far suggest that this approach has the potential to be applied to the X-ray telescopes of the next generation.
Direct imaging of Earth-like planets from space requires dedicated observatories, combining large segmented apertures with instruments and techniques such as coronagraphs, wavefront sensors, and wavefront control in order to reach the high contrast of 10^10 that is required. The complexity of these systems would be increased by the segmentation of the primary mirror, which allows for the larger diameters necessary to image Earth-like planets but also introduces specific patterns in the image due to the pupil shape and segmentation and making high-contrast imaging more challenging. Among these defects, the phasing errors of the primary mirror are a strong limitation to the performance. In this paper, we focus on the wavefront sensing of segment phasing errors for a high-contrast system, using the COronagraphic Focal plane wave-Front Estimation for Exoplanet detection (COFFEE) technique. We implemented and tested COFFEE on the High-contrast imaging for Complex Aperture Telescopes (HiCAT) testbed, in a configuration without any coronagraph and with a classical Lyot coronagraph, to reconstruct errors applied on a 37 segment mirror. We analysed the quality and limitations of the reconstructions. We demonstrate that COFFEE is able to estimate correctly the phasing errors of a segmented telescope for piston, tip, and tilt aberrations of typically 100nm RMS. We also identified the limitations of COFFEE for the reconstruction of low-order wavefront modes, which are highly filtered by the coronagraph. This is illustrated using two focal plane mask sizes on HiCAT. We discuss possible solutions, both in the hardware system and in the COFFEE optimizer, to mitigate these issues.
The expected yield of potentially Earth-like planets is a useful metric for designing future exoplanet-imaging missions. Recent yield studies of direct-imaging missions have focused primarily on yield methods and trade studies using toy models of missions. Here we increase the fidelity of these calculations substantially, adopting more realistic exoplanet demographics as input, an improved target list, and a realistic distribution of exozodi levels. Most importantly, we define standardized inputs for instrument simulations, use these standards to directly compare the performance of realistic instrument designs, include the sensitivity of coronagraph contrast to stellar diameter, and adopt engineering-based throughputs and detector parameters. We apply these new high-fidelity yield models to study several critical design trades: monolithic vs segmented primary mirrors, on-axis vs off-axis secondary mirrors, and coronagraphs vs starshades. We show that as long as the gap size between segments is sufficiently small, there is no difference in yield for coronagraph-based missions with monolithic off-axis telescopes and segmented off-axis telescopes, assuming that the requisite engineering constraints imposed by the coronagraph can be met in both scenarios. We show that there is currently a factor of ~2 yield penalty for coronagraph-based missions with on-axis telescopes compared to off-axis telescopes, and note that there is room for improvement in coronagraph designs for on-axis telescopes. We also reproduce previous results in higher fidelity showing that the yields of coronagraph-based missions continue to increase with aperture size while the yields of starshade-based missions turnover at large apertures if refueling is not possible. Finally, we provide absolute yield numbers with uncertainties that include all major sources of astrophysical noise to guide future mission design.
Optics for future X-ray telescopes will be characterized by very large aperture and focal length, and will be made of lightweight materials like glass or plastic in order to keep the total mass within acceptable limits. Optics based on thin slumped glass foils are currently in use in the NuSTAR telescope and are being developed at various institutes like INAF/OAB, aiming at improving the angular resolution to a few arcsec HEW. Another possibility would be the use of thin plastic foils, being developed at SAO and the Palermo University. Even if relevant progresses in the achieved angular resolution were recently made, a viable possibility to further improve the mirror figure would be the application of piezoelectric actuators onto the non-optical side of the mirrors. In fact, thin mirrors are prone to deform, so they require a careful integration to avoid deformations and even correct forming errors. This however offers the possibility to actively correct the residual deformation. Even if other groups are already at work on this idea, we are pursuing the concept of active integration of thin glass or plastic foils with piezoelectric patches, fed by voltages driven by the feedback provided by X-rays, in intra-focal setup at the XACT facility at INAF/OAPA. In this work, we show the preliminary simulations and the first steps taken in this project.