Do you want to publish a course? Click here

Utilizing Edge Features in Graph Neural Networks via Variational Information Maximization

81   0   0.0 ( 0 )
 Added by Pengfei Chen
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Graph Neural Networks (GNNs) achieve an impressive performance on structured graphs by recursively updating the representation vector of each node based on its neighbors, during which parameterized transformation matrices should be learned for the node feature updating. However, existing propagation schemes are far from being optimal since they do not fully utilize the relational information between nodes. We propose the information maximizing graph neural networks (IGNN), which maximizes the mutual information between edge states and transform parameters. We reformulate the mutual information as a differentiable objective via a variational approach. We compare our model against several recent variants of GNNs and show that our model achieves the state-of-the-art performance on multiple tasks including quantum chemistry regression on QM9 dataset, generalization capability from QM9 to larger molecular graphs, and prediction of molecular bioactivities relevant for drug discovery. The IGNN model is based on an elegant and fundamental idea in information theory as explained in the main text, and it could be easily generalized beyond the contexts of molecular graphs considered in this work. To encourage more future work in this area, all datasets and codes used in this paper will be released for public access.



rate research

Read More

158 - Qi Zhu , Yidan Xu , Haonan Wang 2020
Graph neural networks (GNNs) have been shown with superior performance in various applications, but training dedicated GNNs can be costly for large-scale graphs. Some recent work started to study the pre-training of GNNs. However, none of them provide theoretical insights into the design of their frameworks, or clear requirements and guarantees towards the transferability of GNNs. In this work, we establish a theoretically grounded and practically useful framework for the transfer learning of GNNs. Firstly, we propose a novel view towards the essential graph information and advocate the capturing of it as the goal of transferable GNN training, which motivates the design of Ours, a novel GNN framework based on ego-graph information maximization to analytically achieve this goal. Secondly, we specify the requirement of structure-respecting node features as the GNN input, and derive a rigorous bound of GNN transferability based on the difference between the local graph Laplacians of the source and target graphs. Finally, we conduct controlled synthetic experiments to directly justify our theoretical conclusions. Extensive experiments on real-world networks towards role identification show consistent results in the rigorously analyzed setting of direct-transfering, while those towards large-scale relation prediction show promising results in the more generalized and practical setting of transfering with fine-tuning.
83 - Xinhan Di , Pengqian Yu , Rui Bu 2019
A variety of graph neural networks (GNNs) frameworks for representation learning on graphs have been recently developed. These frameworks rely on aggregation and iteration scheme to learn the representation of nodes. However, information between nodes is inevitably lost in the scheme during learning. In order to reduce the loss, we extend the GNNs frameworks by exploring the aggregation and iteration scheme in the methodology of mutual information. We propose a new approach of enlarging the normal neighborhood in the aggregation of GNNs, which aims at maximizing mutual information. Based on a series of experiments conducted on several benchmark datasets, we show that the proposed approach improves the state-of-the-art performance for four types of graph tasks, including supervised and semi-supervised graph classification, graph link prediction and graph edge generation and classification.
The creation of social ties is largely determined by the entangled effects of peoples similarities in terms of individual characters and friends. However, feature and structural characters of people usually appear to be correlated, making it difficult to determine which has greater responsibility in the formation of the emergent network structure. We propose emph{AN2VEC}, a node embedding method which ultimately aims at disentangling the information shared by the structure of a network and the features of its nodes. Building on the recent developments of Graph Convolutional Networks (GCN), we develop a multitask GCN Variational Autoencoder where different dimensions of the generated embeddings can be dedicated to encoding feature information, network structure, and shared feature-network information. We explore the interaction between these disentangled characters by comparing the embedding reconstruction performance to a baseline case where no shared information is extracted. We use synthetic datasets with different levels of interdependency between feature and network characters and show (i) that shallow embeddings relying on shared information perform better than the corresponding reference with unshared information, (ii) that this performance gap increases with the correlation between network and feature structure, and (iii) that our embedding is able to capture joint information of structure and features. Our method can be relevant for the analysis and prediction of any featured network structure ranging from online social systems to network medicine.
The richness in the content of various information networks such as social networks and communication networks provides the unprecedented potential for learning high-quality expressive representations without external supervision. This paper investigates how to preserve and extract the abundant information from graph-structured data into embedding space in an unsupervised manner. To this end, we propose a novel concept, Graphical Mutual Information (GMI), to measure the correlation between input graphs and high-level hidden representations. GMI generalizes the idea of conventional mutual information computations from vector space to the graph domain where measuring mutual information from two aspects of node features and topological structure is indispensable. GMI exhibits several benefits: First, it is invariant to the isomorphic transformation of input graphs---an inevitable constraint in many existing graph representation learning algorithms; Besides, it can be efficiently estimated and maximized by current mutual information estimation methods such as MINE; Finally, our theoretical analysis confirms its correctness and rationality. With the aid of GMI, we develop an unsupervised learning model trained by maximizing GMI between the input and output of a graph neural encoder. Considerable experiments on transductive as well as inductive node classification and link prediction demonstrate that our method outperforms state-of-the-art unsupervised counterparts, and even sometimes exceeds the performance of supervised ones.
Data selection methods, such as active learning and core-set selection, are useful tools for improving the data efficiency of deep learning models on large-scale datasets. However, recent deep learning models have moved forward from independent and identically distributed data to graph-structured data, such as social networks, e-commerce user-item graphs, and knowledge graphs. This evolution has led to the emergence of Graph Neural Networks (GNNs) that go beyond the models existing data selection methods are designed for. Therefore, we present Grain, an efficient framework that opens up a new perspective through connecting data selection in GNNs with social influence maximization. By exploiting the common patterns of GNNs, Grain introduces a novel feature propagation concept, a diversified influence maximization objective with novel influence and diversity functions, and a greedy algorithm with an approximation guarantee into a unified framework. Empirical studies on public datasets demonstrate that Grain significantly improves both the performance and efficiency of data selection (including active learning and core-set selection) for GNNs. To the best of our knowledge, this is the first attempt to bridge two largely parallel threads of research, data selection, and social influence maximization, in the setting of GNNs, paving new ways for improving data efficiency.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا