No Arabic abstract
The role of electron-phonon scattering in finite-temperature anomalous Hall effect is still poorly understood. In this work, we present a Boltzmann theory for the side-jump contribution from electron-phonon scattering, which is derived from the microscopic quantum mechanical theory. We show that the resulting phonon side-jump conductivity generally approaches different limiting values in the high and low temperature limits, and hence can exhibit strong temperature dependence in the intermediate temperature regime. Our theory is amenable to ab initio treatment, which makes quantitative comparison between theoretical and experimental results possible.
Persistent confusion has existed between the intrinsic (Berry curvature) and the side jump mechanisms of anomalous Hall effect (AHE) in ferromagnets. We provide unambiguous identification of the side jump mechanism, in addition to the skew scattering contribution in epitaxial paramagnetic Ni$_{34}$Cu$_{66}$ thin films, in which the intrinsic contribution is by definition excluded. Furthermore, the temperature dependence of the AHE further reveals that the side jump mechanism is dominated by the elastic scattering.
Exciton Valley Hall effect is the spatial separation of the valley-tagged excitons in the presence of a drag force. Usually, the effect is associated with the anomalous velocity acquired by the particles due to the Berry curvature of the Bloch bands. Here we show that the anomalous velocity plays no role in the exciton valley Hall effect, which is governed by the side-jump and skew scattering mechanisms. We develop microscopic theory of the exciton valley Hall effect in the presence of synthetic electric field and phonon drag and calculate all relevant contributions to the valley Hall current also demonstrating the cancellation of the anomalous velocity. The sensitivity of the effect to the origin of the drag force and to the scattering processes is shown. We extend the drift-diffusion model to account for the valley Hall effect and calculate the exciton density and valley polarization profiles.
A wide variation in the disorder strength, as inferred from an order of magnitude variation in the longitudinal resistivity of Co2FeSi (CFS) Huesler alloy thin films of fixed (50 nm) thickness, has been achieved by growing these films on Si(111) substrates at substrate temperatures ranging from room temperature (RT) to 600 C. An in-depth study of the influence of disorder on anomalous Hall resistivity,longitudinal resistivity(LR) and magnetoresistance, enabled by this approach, reveals the following. The side-jump mechanism gives a dominant contribution to anomalous Hall resistivity (AHR) in the CFS thin films, regardless of the degree of disorder present. A new and novel contribution to both LR and AHR characterized by the logarithmic temperature dependence at temperatures below the minimum, exclusive to the amorphous CFS films, originates from the scattering of conduction electrons from the diffusive hydrodynamic modes associated with the longitudinal component of magnetization, called diffusons. In these amorphous CFS films, the electron-diffuson, e d, scattering and weak localization (WL) mechanisms compete with that arising from the inelastic electron magnon, e m, scattering to produce the minimum in longitudinal resistivity, whereas the minimum in AHR is caused by the competing contributions from the e d and e m scattering, as WL does not make any contribution to AHR. In sharp contrast, in crystalline films, enhanced electron electron Coulomb interaction (EEI), which is basically responsible for the resistivity minimum, makes no contribution to AHR with the result that AHR does not exhibit a minimum.
The side-jump effect is a manifestation of the spin orbit interaction in electron scattering from an atom/ion/impurity. The effect has a broad interest because of its conceptual importance for generic spin-orbital physics, in particular the effect is widely discussed in spintronics. We reexamine the effect accounting for the exact nonperturbative electron wave function inside the atomic core. We find that value of the effect is much smaller than estimates accepted in literature. The reduction factor is 1/Z^2, where Z is the nucleus charge of the atom/impurity. This implies that the side-jump effect is practically irrelevant for spintronics, the skew scattering and/or the intrinsic mechanism always dominate the anomalous Hall and spin Hall effects.
Doping a topological insulator (TI) film with transition metal ions can break its time-reversal symmetry and lead to the realization of the quantum anomalous Hall (QAH) effect. Prior studies have shown that the longitudinal resistance of the QAH samples usually does not vanish when the Hall resistance shows a good quantization. This has been interpreted as a result of the presence of possible dissipative conducting channels in magnetic TI samples. By studying the temperature- and magnetic field-dependence of the magnetoresistance of a magnetic TI sandwich heterostructure device, we demonstrate that the predominant dissipation mechanism in thick QAH insulators can switch between non-chiral edge states and residual bulk states in different magnetic field regimes. The interactions between bulk states, chiral edge states, and non-chiral edge states are also investigated. Our study provides a way to distinguish between the dissipation arising from the residual bulk states and non-chiral edge states, which is crucial for achieving true dissipationless transport in QAH insulators and for providing deeper insights into QAH-related phenomena.