Do you want to publish a course? Click here

PerspectroScope: A Window to the World of Diverse Perspectives

81   0   0.0 ( 0 )
 Added by Sihao Chen
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

This work presents PerspectroScope, a web-based system which lets users query a discussion-worthy natural language claim, and extract and visualize various perspectives in support or against the claim, along with evidence supporting each perspective. The system thus lets users explore various perspectives that could touch upon aspects of the issue at hand.The system is built as a combination of retrieval engines and learned textual-entailment-like classifiers built using a few recent developments in natural language understanding. To make the system more adaptive, expand its coverage, and improve its decisions over time, our platform employs various mechanisms to get corrections from the users. PerspectroScope is available at github.com/CogComp/perspectroscope.



rate research

Read More

129 - Eder Izaguirre , Itay Yavin 2015
The kinetic mixing of the vector boson of hypercharge with the vector boson(s) associated with particle sectors beyond the Standard Model is one of the best motivated windows to new physics. The resulting phenomenology depends on whether the new vector boson is massive or massless. The phenomenology associated with the massive phase has received considerable attention in recent years with many theoretical explorations and new experimental efforts, while the massless phase is linked to the phenomenology of milli-charged particles. In this paper we introduce the more general case where the kinetic mixing is with a vector boson that is a linear combination of both a massive and a massless state (as hypercharge is in the Standard Model). We demonstrate that the general phase is only weakly constrained when the mass scale associated with it is above about 100 MeV. Finally, we show that a new dedicated experiment at the LHC, proposed recently in Ref. [1], can explore large parts of the parameter space in the mass range between 100 MeV and 100 GeV. In particular, it is uniquely sensitive to a new signature that only arises in the general phase.
One key consequence of the information revolution is a significant increase and a contamination of our information supply. The practice of fact checking wont suffice to eliminate the biases in text data we observe, as the degree of factuality alone does not determine whether biases exist in the spectrum of opinions visible to us. To better understand controversial issues, one needs to view them from a diverse yet comprehensive set of perspectives. For example, there are many ways to respond to a claim such as animals should have lawful rights, and these responses form a spectrum of perspectives, each with a stance relative to this claim and, ideally, with evidence supporting it. Inherently, this is a natural language understanding task, and we propose to address it as such. Specifically, we propose the task of substantiated perspective discovery where, given a claim, a system is expected to discover a diverse set of well-corroborated perspectives that take a stance with respect to the claim. Each perspective should be substantiated by evidence paragraphs which summarize pertinent results and facts. We construct PERSPECTRUM, a dataset of claims, perspectives and evidence, making use of online debate websites to create the initial data collection, and augmenting it using search engines in order to expand and diversify our dataset. We use crowd-sourcing to filter out noise and ensure high-quality data. Our dataset contains 1k claims, accompanied with pools of 10k and 8k perspective sentences and evidence paragraphs, respectively. We provide a thorough analysis of the dataset to highlight key underlying language understanding challenges, and show that human baselines across multiple subtasks far outperform ma-chine baselines built upon state-of-the-art NLP techniques. This poses a challenge and opportunity for the NLP community to address.
Due to the lack of a large-scale reflection removal dataset with diverse real-world scenes, many existing reflection removal methods are trained on synthetic data plus a small amount of real-world data, which makes it difficult to evaluate the strengths or weaknesses of different reflection removal methods thoroughly. Furthermore, existing real-world benchmarks and datasets do not categorize image data based on the types and appearances of reflection (e.g., smoothness, intensity), making it hard to analyze reflection removal methods. Hence, we construct a new reflection removal dataset that is categorized, diverse, and real-world (CDR). A pipeline based on RAW data is used to capture perfectly aligned input images and transmission images. The dataset is constructed using diverse glass types under various environments to ensure diversity. By analyzing several reflection removal methods and conducting extensive experiments on our dataset, we show that state-of-the-art reflection removal methods generally perform well on blurry reflection but fail in obtaining satisfying performance on other types of real-world reflection. We believe our dataset can help develop novel methods to remove real-world reflection better. Our dataset is available at https://alexzhao-hugga.github.io/Real-World-Reflection-Removal/.
While most previous work has focused on different pretraining objectives and architectures for transfer learning, we ask how to best adapt the pretrained model to a given target task. We focus on the two most common forms of adaptation, feature extraction (where the pretrained weights are frozen), and directly fine-tuning the pretrained model. Our empirical results across diverse NLP tasks with two state-of-the-art models show that the relative performance of fine-tuning vs. feature extraction depends on the similarity of the pretraining and target tasks. We explore possible explanations for this finding and provide a set of adaptation guidelines for the NLP practitioner.
Towards the end of 2019, Wuhan experienced an outbreak of novel coronavirus, which soon spread all over the world, resulting in a deadly pandemic that infected millions of people around the globe. The government and public health agencies followed many strategies to counter the fatal virus. However, the virus severely affected the social and economic lives of the people. In this paper, we extract and study the opinion of people from the top five worst affected countries by the virus, namely USA, Brazil, India, Russia, and South Africa. We propose a deep language-independent Multilevel Attention-based Conv-BiGRU network (MACBiG-Net), which includes embedding layer, word-level encoded attention, and sentence-level encoded attention mechanism to extract the positive, negative, and neutral sentiments. The embedding layer encodes the sentence sequence into a real-valued vector. The word-level and sentence-level encoding is performed by a 1D Conv-BiGRU based mechanism, followed by word-level and sentence-level attention, respectively. We further develop a COVID-19 Sentiment Dataset by crawling the tweets from Twitter. Extensive experiments on our proposed dataset demonstrate the effectiveness of the proposed MACBiG-Net. Also, attention-weights visualization and in-depth results analysis shows that the proposed network has effectively captured the sentiments of the people.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا