No Arabic abstract
Due to the lack of a large-scale reflection removal dataset with diverse real-world scenes, many existing reflection removal methods are trained on synthetic data plus a small amount of real-world data, which makes it difficult to evaluate the strengths or weaknesses of different reflection removal methods thoroughly. Furthermore, existing real-world benchmarks and datasets do not categorize image data based on the types and appearances of reflection (e.g., smoothness, intensity), making it hard to analyze reflection removal methods. Hence, we construct a new reflection removal dataset that is categorized, diverse, and real-world (CDR). A pipeline based on RAW data is used to capture perfectly aligned input images and transmission images. The dataset is constructed using diverse glass types under various environments to ensure diversity. By analyzing several reflection removal methods and conducting extensive experiments on our dataset, we show that state-of-the-art reflection removal methods generally perform well on blurry reflection but fail in obtaining satisfying performance on other types of real-world reflection. We believe our dataset can help develop novel methods to remove real-world reflection better. Our dataset is available at https://alexzhao-hugga.github.io/Real-World-Reflection-Removal/.
Image composition targets at inserting a foreground object on a background image. Most previous image composition methods focus on adjusting the foreground to make it compatible with background while ignoring the shadow effect of foreground on the background. In this work, we focus on generating plausible shadow for the foreground object in the composite image. First, we contribute a real-world shadow generation dataset DESOBA by generating synthetic composite images based on paired real images and deshadowed images. Then, we propose a novel shadow generation network SGRNet, which consists of a shadow mask prediction stage and a shadow filling stage. In the shadow mask prediction stage, foreground and background information are thoroughly interacted to generate foreground shadow mask. In the shadow filling stage, shadow parameters are predicted to fill the shadow area. Extensive experiments on our DESOBA dataset and real composite images demonstrate the effectiveness of our proposed method.
This paper presents the Rail-5k dataset for benchmarking the performance of visual algorithms in a real-world application scenario, namely the rail surface defects detection task. We collected over 5k high-quality images from railways across China, and annotated 1100 images with the help from railway experts to identify the most common 13 types of rail defects. The dataset can be used for two settings both with unique challenges, the first is the fully-supervised setting using the 1k+ labeled images for training, fine-grained nature and long-tailed distribution of defect classes makes it hard for visual algorithms to tackle. The second is the semi-supervised learning setting facilitated by the 4k unlabeled images, these 4k images are uncurated containing possible image corruptions and domain shift with the labeled images, which can not be easily tackle by previous semi-supervised learning methods. We believe our dataset could be a valuable benchmark for evaluating robustness and reliability of visual algorithms.
Object recognition has made great advances in the last decade, but predominately still relies on many high-quality training examples per object category. In contrast, learning new objects from only a few examples could enable many impactful applications from robotics to user personalization. Most few-shot learning research, however, has been driven by benchmark datasets that lack the high variation that these applications will face when deployed in the real-world. To close this gap, we present the ORBIT dataset and benchmark, grounded in the real-world application of teachable object recognizers for people who are blind/low-vision. The dataset contains 3,822 videos of 486 objects recorded by people who are blind/low-vision on their mobile phones. The benchmark reflects a realistic, highly challenging recognition problem, providing a rich playground to drive research in robustness to few-shot, high-variation conditions. We set the benchmarks first state-of-the-art and show there is massive scope for further innovation, holding the potential to impact a broad range of real-world vision applications including tools for the blind/low-vision community. We release the dataset at https://doi.org/10.25383/city.14294597 and benchmark code at https://github.com/microsoft/ORBIT-Dataset.
We propose a simple yet effective reflection-free cue for robust reflection removal from a pair of flash and ambient (no-flash) images. The reflection-free cue exploits a flash-only image obtained by subtracting the ambient image from the corresponding flash image in raw data space. The flash-only image is equivalent to an image taken in a dark environment with only a flash on. We observe that this flash-only image is visually reflection-free, and thus it can provide robust cues to infer the reflection in the ambient image. Since the flash-only image usually has artifacts, we further propose a dedicated model that not only utilizes the reflection-free cue but also avoids introducing artifacts, which helps accurately estimate reflection and transmission. Our experiments on real-world images with various types of reflection demonstrate the effectiveness of our model with reflection-free flash-only cues: our model outperforms state-of-the-art reflection removal approaches by more than 5.23dB in PSNR, 0.04 in SSIM, and 0.068 in LPIPS. Our source code and dataset are publicly available at {github.com/ChenyangLEI/flash-reflection-removal}.
Real-world image noise removal is a long-standing yet very challenging task in computer vision. The success of deep neural network in denoising stimulates the research of noise generation, aiming at synthesizing more clean-noisy image pairs to facilitate the training of deep denoisers. In this work, we propose a novel unified framework to simultaneously deal with the noise removal and noise generation tasks. Instead of only inferring the posteriori distribution of the latent clean image conditioned on the observed noisy image in traditional MAP framework, our proposed method learns the joint distribution of the clean-noisy image pairs. Specifically, we approximate the joint distribution with two different factorized forms, which can be formulated as a denoiser mapping the noisy image to the clean one and a generator mapping the clean image to the noisy one. The learned joint distribution implicitly contains all the information between the noisy and clean images, avoiding the necessity of manually designing the image priors and noise assumptions as traditional. Besides, the performance of our denoiser can be further improved by augmenting the original training dataset with the learned generator. Moreover, we propose two metrics to assess the quality of the generated noisy image, for which, to the best of our knowledge, such metrics are firstly proposed along this research line. Extensive experiments have been conducted to demonstrate the superiority of our method over the state-of-the-arts both in the real noise removal and generation tasks. The training and testing code is available at https://github.com/zsyOAOA/DANet.