Do you want to publish a course? Click here

Probing the top quark flavor-changing couplings at CEPC

90   0   0.0 ( 0 )
 Added by Liaoshan Shi
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We propose to study the flavor properties of the top quark at the future Circular Electron Positron Collider (CEPC) in China. We systematically consider the full set of 56 real parameters that characterize the flavor-changing neutral interactions of the top quark, which can be tested at CEPC in the single top production channel. Compared with the current bounds from the LEP2 data and the projected limits at the high-luminosity LHC, we find that CEPC could improve the limits of the four-fermion flavor-changing coefficients by one to two orders of magnitude, and would also provide similar sensitivity for the two-fermion flavor-changing coefficients. Overall, CEPC could explore a large fraction of currently allowed parameter space that will not be covered by the LHC upgrade. We show that the $c$-jet tagging capacity at CEPC could further improve its sensitivity to top-charm flavor-changing couplings. If a signal is observed, the kinematic distribution as well as the $c$-jet tagging could be exploited to pinpoint the various flavor-changing couplings, providing valuable information about the flavor properties of the top quark.



rate research

Read More

The $h(125)$ boson, discovered only in 2012, is lower than the top quark in mass, hence $t to ch$ search commenced immediately thereafter, with current limits at the per mille level and improving. As the $t to ch$ rate vanishes with the $h$-$H$ mixing angle $cosgamma to 0$, we briefly review the collider probes of the top changing $tcH/tcA$ coupling $rho_{tc}$ of the exotic $CP$-even/odd Higgs bosons $H/A$. Together with an extra top conserving $ttH/ttA$ coupling $rho_{tt}$, one has an enhanced $cbH^+$ coupling alongside the familiar $tbH^+$ coupling, where $H^+$ is the charged Higgs boson. The main processes we advocate are $cg to tH/A to ttbar c,; ttbar t$ (same-sign top and triple-top), and $cg to bH^+ to btbar b$. We also discuss some related processes such as $cg to thh$, $tZH$ that depend on $cosgamma$ being nonzero, comment briefly on $gg to H/A to tbar t, tbar c$ resonant production, and touch upon the $rho_{tu}$ coupling.
We adopt a fully gauge-invariant effective-field-theory approach for parametrizing top-quark flavor-changing-neutral-current interactions. It allows for a global interpretation of experimental constraints (or measurements) and the systematic treatment of higher-order quantum corrections. We discuss some recent results obtained at next-to-leading-order accuracy in QCD and perform, at that order, a first global analysis of a subset of the available experimental limits in terms of effective operator coefficients. We encourage experimental collaborations to adopt this approach and extend the analysis by using all information they have prime access to.
179 - U. Baur 2004
We consider QCD tbar{t}gamma and tbar{t}Z production at hadron colliders as a tool to measure the ttgamma and ttZ couplings. At the Tevatron it may be possible to perform a first, albeit not very precise, test of the ttgamma vector and axial vector couplings in tbar{t}gamma production, provided that more than 5 fb^{-1} of integrated luminosity are accumulated. The tbar{t}Z cross section at the Tevatron is too small to be observable. At the CERN Large Hadron Collider (LHC) it will be possible to probe the ttgamma couplings at the few percent level, which approaches the precision which one hopes to achieve with a next-generation e^+e^- linear collider. The LHCs capability of associated QCD tbar{t}V (V=gamma, Z) production has the added advantage that the ttgamma and ttZ couplings are not entangled. For an integrated luminosity of 300 fb^{-1}, the ttZ vector (axial vector) coupling can be determined with an uncertainty of 45-85% (15-20%), whereas the dimension-five dipole form factors can be measured with a precision of 50-55%. The achievable limits improve typically by a factor of 2-3 for the luminosity-upgraded (3 ab^{-1}) LHC.
Models with a non-universal Z exhibit in general flavor changing neutral currents (FCNC) at tree-level. When the Z couplings favor the third generation, flavor changing transitions of the form Ztc and Ztu could be large enough to be observable at the LHC. In this paper we explore this possibility using the associated production of a single top-quark with the Z and find that integrated luminosities of a few hundred fb$^{-1}$ are necessary to probe the interesting region of parameter space.
120 - U. Baur 2005
The International Linear Collider (ILC) will be able to precisely measure the electroweak couplings of the top in e+e- -> tt~. We compare the limits which can be achieved at the ILC with those which can be obtained in tt~gamma$ and tt~Z production at the Large Hadron Collider (LHC).
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا