Do you want to publish a course? Click here

Elastic anomalies associated with domain switching in BaTiO$_3$ single crystals under in-situ electrical cycling

195   0   0.0 ( 0 )
 Added by Guillaume Nataf
 Publication date 2019
  fields Physics
and research's language is English
 Authors D. Pesquera




Ask ChatGPT about the research

The elastic response of BaTiO$_3$ single crystals during electric field cycling at room temperature has been studied using in-situ Resonant Ultrasound Spectroscopy (RUS), which allows monitoring of both the elastic and anelastic changes caused by ferroelectric polarization switching. We find that the first ferroelectric switching of a virgin single crystal is dominated by ferroelastic 90{deg} switching. In subsequent ferroelectric switching, ferroelastic switching is reduced by domain pinning and by the predominance of 180{deg} ferroelectric domains, as confirmed by polarized light microscopy. RUS under in-situ electric field therefore demonstrates to be an effective technique for the investigation of electromechanical coupling in ferroelectrics.



rate research

Read More

The temperature dependence of the elastic properties of antiferroelectric PbHfO3 was investigated by Brillouin scattering. The two structural phase transitions of antiferroelectric-antiferroelectric-paraelectric phases were clearly identified by discontinuous changes in the acoustic mode frequencies and the hypersonic damping. The substantial softening of the mode frequency along with the remarkable increase in the acoustic damping observed in the paraelectric phase indicated the formation of precursor noncentrosymmetric (polar) clusters and their coupling to the acoustic waves. This was corroborated by the observation of quasi-elastic central peaks, the intensity of which grew upon cooling toward the Curie point. The obtained relaxation time exhibited a slowing-down behavior, suggesting that the dynamics of precursor clusters becomes more sluggish on approaching the phase transition temperature.
We have measured temperature and magnetic field dependencies of the sound velocities and the sound attenuation in HoNi2B2C single crystals. The main result is a huge softening the velocity of C66 mode due to a cooperative Jahn-Teller effect, resulting in a tetragonal-orthorhombic structural phase transition. Anomalies in the behavior of the C66 mode through various magnetic phase transitions permit us to revise the low temperature H-T phase diagrams of this compound.
Cylindrical BaTiO3 nanorods embedded in (100)-oriented SrTiO3 epitaxial film in a brush-like configuration are investigated in the framework of the Ginzburg-Landau-Devonshire model. It is shown that strain compatibility at BaTiO3/SrTiO3 interfaces keeps BaTiO3 nanorods in the rhombohedral phase even at room temperature. Depolarization field at the BaTiO3/SrTiO3 interfaces is reduced by an emission of the 109-degree or 71-degree domain boundaries. In case of nanorods of about 10-80 nm diameter, the ferroelectric domains are found to form a quadruplet with a robust flux-closure arrangement of the in-plane components of the spontaneous polarization. The out-of-plane components of the polarization are either balanced or oriented up or down along the nanorod axis. Switching of the out-of-plane polarization with coercive field of about $5.10^6$ V/m occurs as a collapse of a 71-degree cylindrical domain boundary formed at the curved circumference surface of the nanorod. The remnant domain quadruplet configuration is chiral, with the $C_4$ macroscopic symmetry. More complex stable domain configurations with coexisting clockwise and anticlockwise quadruplets contain interesting arrangement of strongly curved 71-degree boundaries.
195 - M.A. Novotny , M. Kolesik , 1997
A model for single-domain uniaxial ferromagnetic particles with high anisotropy, the Ising model, is studied. Recent experimental observations have been made of the probability that the magnetization has not switched. Here an approach is described in which it is emphasized that a ferromagnetic particle in an unfavorable field is in fact a metastable system, and the switching is accomplished through the nucleation and subsequent growth of localized droplets. Nucleation theory is applied to finite systems to determine the coercivity as a function of particle size and to calculate the probability of not switching. Both of these quantities are modified by different boundary conditions, magnetostatic interactions, and quenched disorder.
Electric polarization loops are measured at room temperature on highly pure BiFeO3 single crystals synthesized by a flux growth method. Because the crystals have a high electrical resistivity, the resulting low leakage currents allow us to measure a large spontaneous polarization reaching 100 microC.cm^{-2}, a value never reported in the bulk. During electric cycling, the slow degradation of the material leads to an evolution of the hysteresis curves eventually preventing full saturation of the crystals.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا