Do you want to publish a course? Click here

Elastic Anomalies Associated with the Antiferroelectric Phase Transitions of PbHfO3 Single Crystals

206   0   0.0 ( 0 )
 Added by Jae-Hyeon Ko
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

The temperature dependence of the elastic properties of antiferroelectric PbHfO3 was investigated by Brillouin scattering. The two structural phase transitions of antiferroelectric-antiferroelectric-paraelectric phases were clearly identified by discontinuous changes in the acoustic mode frequencies and the hypersonic damping. The substantial softening of the mode frequency along with the remarkable increase in the acoustic damping observed in the paraelectric phase indicated the formation of precursor noncentrosymmetric (polar) clusters and their coupling to the acoustic waves. This was corroborated by the observation of quasi-elastic central peaks, the intensity of which grew upon cooling toward the Curie point. The obtained relaxation time exhibited a slowing-down behavior, suggesting that the dynamics of precursor clusters becomes more sluggish on approaching the phase transition temperature.



rate research

Read More

194 - D. Pesquera 2019
The elastic response of BaTiO$_3$ single crystals during electric field cycling at room temperature has been studied using in-situ Resonant Ultrasound Spectroscopy (RUS), which allows monitoring of both the elastic and anelastic changes caused by ferroelectric polarization switching. We find that the first ferroelectric switching of a virgin single crystal is dominated by ferroelastic 90{deg} switching. In subsequent ferroelectric switching, ferroelastic switching is reduced by domain pinning and by the predominance of 180{deg} ferroelectric domains, as confirmed by polarized light microscopy. RUS under in-situ electric field therefore demonstrates to be an effective technique for the investigation of electromechanical coupling in ferroelectrics.
We have measured temperature and magnetic field dependencies of the sound velocities and the sound attenuation in HoNi2B2C single crystals. The main result is a huge softening the velocity of C66 mode due to a cooperative Jahn-Teller effect, resulting in a tetragonal-orthorhombic structural phase transition. Anomalies in the behavior of the C66 mode through various magnetic phase transitions permit us to revise the low temperature H-T phase diagrams of this compound.
We report on a novel extension of the recent phase-field crystal (PFC) method introduced in [Elder et al., Phys. Rev. Lett., Vol. 88, 245701:1-4 (2002)], which incorporates elastic interactions as well as crystal plasticity and diffusive dynamics. In our model, elastic interactions are mediated through wave modes that propagate on time scales many orders of magnitude slower than atomic vibrations but still much faster than diffusive times scales. This allows us to preserve the quintessential advantage of the PFC model: the ability to simulate atomic-scale interactions and dynamics on time scales many orders of magnitude longer than characteristic vibrational time scales. We demonstrate the two different modes of propagation in our model and show that simulations of grain growth and elasto-plastic deformation are consistent with the microstructural properties of nanocrystals.
A powder X-ray diffraction study, combined with the magnetic susceptibility and electric transport measurements, was performed on a series of LnCoO3 perovskites (Ln = Y, Dy, Gd, Sm, Nd, Pr and La) over a temperature range 100 - 1000 K. A non-standard temperature dependence of the observed thermal expansion was modelled as a sum of three contributions: (1) Weighted sum of lattice expansions of the cobaltite in the diamagnetic low spin state and in the intermediate (IS) or high (HS) spin state. (2) An anomalous expansion due to the increasing population of excited (IS or HS) states of Co3+ ions at the course of the diamagnetic-paramagnetic transition. (3) An anomalous expansion due to excitations of Co3+ ions to another paramagnetic state accompanied by an insulator-metal transition. The anomalous expansion is governed by parameters that are found to vary linearly with the Ln ionic radius. In the case of the first magnetic transition it is the energy splitting E between the ground low spin state and the excited state, presumably the intermediate spin state. The energy splitting E, determined by a fit of magnetic susceptibility, decreases with temperature. The values of E determined for LaCoO3 and YCoO3 at T = 0 K as 164 K and 2875 K, respectively, fall to zero at T = 230 K for LaCoO3 and 860 K for YCoO3. The second anomalous expansion connected with a simultaneous magnetic and insulator-metal transition is characterized by its center at T = 535 K for LaCoO3 and 800 K for YCoO3. The change of the unit cell volume during each transition is independent on the Ln cation and is about 1% in both cases.
120 - Erin Jedlicka 2021
We study the effects of bismuth doping on the crystal structure and phase transitions in single crystals of the perovskite semiconductor methylammonium lead tribromide, MAPbBr3. By measuring temperature-dependent specific heat capacity (Cp) we find that, as Bi doping increases, the phase transition assigned to the cubic to tetragonal phase boundary decreases in temperature. Furthermore, after doping we observe one phase transition between 135 and 155 K, in contrast to two transitions observed in the undoped single crystal. These results appear strikingly similar to previously reported effects of mechanical pressure on perovskite crystal structure. Using X-ray diffraction, we show that the lattice constant decreases as Bi is incorporated into the crystal, as predicted by density functional theory (DFT). We propose that bismuth substitutional doping on the lead site is dominant, resulting in BiPb+ centers which induce compressive chemical strain that alters the crystalline phase transitions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا