Do you want to publish a course? Click here

Self-induced Scattering of Strahl Electrons in the Solar Wind

301   0   0.0 ( 0 )
 Added by Daniel Verscharen
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the scattering of strahl electrons by microinstabilities as a mechanism for creating the electron halo in the solar wind. We develop a mathematical framework for the description of electron-driven microinstabilities and discuss the associated physical mechanisms. We find that an instability of the oblique fast-magnetosonic/whistler (FM/W) mode is the best candidate for a microinstability that scatters strahl electrons into the halo. We derive approximate analytic expressions for the FM/W instability threshold in two different $beta_{mathrm c}$ regimes, where $beta_{mathrm c}$ is the ratio of the core electrons thermal pressure to the magnetic pressure, and confirm the accuracy of these thresholds through comparison with numerical solutions to the hot-plasma dispersion relation. We find that the strahl-driven oblique FM/W instability creates copious FM/W waves under low-$beta_{mathrm c}$ conditions when $U_{0mathrm s}gtrsim 3w_{mathrm c}$, where $U_{0mathrm s}$ is the strahl speed and $w_{mathrm c}$ is the thermal speed of the core electrons. These waves have a frequency of about half the local electron gyrofrequency. We also derive an analytic expression for the oblique FM/W instability for $beta_{mathrm c}sim 1$. The comparison of our theoretical results with data from the emph{Wind} spacecraft confirms the relevance of the oblique FM/W instability for the solar wind. The whistler heat-flux, ion-acoustic heat-flux, kinetic-Alfven-wave heat-flux, and electrostatic electron-beam instabilities cannot fulfill the requirements for self-induced scattering of strahl electrons into the halo. We make predictions for the electron strahl close to the Sun, which will be tested by measurements from emph{Parker Solar Probe} and emph{Solar Orbiter}.



rate research

Read More

Electron velocity distribution functions in the solar wind according to standard models consist of 4 components, of which 3 are symmetric - the core, the halo, and the superhalo, and one is magnetic field-aligned, beam-like population, referred to as the strahl. We analysed in-situ measurements provided by the two Helios spacecrafts to study the behaviour of the last, the strahl electron population, in the inner Solar system between 0.3 and 1 au. The strahl is characterised with a pitch-angle width (PAW) depending on electron energy and evolving with radial distance. We find different behaviour of the strahl electrons for solar wind separated into types by the core electron beta parallel value ($beta_{ecparallel}$). For the low-$beta_{ecparallel}$ solar wind the strahl component is more pronounced, and the variation of PAW is electron energy dependent. At low energies a slight focusing over distance is observed, and the strahl PAW measured at 0.34 au agrees with the width predicted by a collisionless focusing model. The broadening observed for higher-energy strahl electrons during expansion can be described by an exponential relation, which points toward an energy dependent scattering mechanism. In the high-$beta_{ecparallel}$ solar wind the strahl appears broader in consistence with the high-$beta_{ecparallel}$ plasma being more unstable with respect to kinetic instabilities. Finally we extrapolate our observations to the distance of 0.16 au, predicting the strahl PAWs in the low-$beta_{ecparallel}$ solar wind to be $sim$ 29$^o$ for all energies, and in the high-$beta_{ecparallel}$ solar wind a bit broader, ranging between 37$^o$ and 65$^o$.
We investigate the spatial correlation properties of the solar wind using simultaneous observations by the ACE and WIND spacecraft. We use mutual information as a nonlinear measure of correlation and compare this to linear correlation. We find that the correlation lengthscales of fluctuations in density and magnetic field magnitude vary strongly with the solar cycle, whereas correlation lengths of fluctuations in B field components do not. We find the correlation length of |B| ~ 120 Re at solar minimum and ~ 270 Re at maximum and the correlation length of density ~ 75 Re at minimum and ~ 170 Re at minimum. The components of the B field have correlation lengths ~ correlation length |B| at minimum.
Observations of plasma waves by the Fields Suite and of electrons by the Solar Wind Electrons Alphas and Protons Investigation (SWEAP) on Parker Solar Probe provide strong evidence for pitch angle scattering of strahl-energy electrons by narrowband whistler-mode waves at radial distances less than ~0.3 AU. We present two example intervals of a few hours that include 8 waveform captures with whistler-mode waves and 26 representative electron distributions that are examined in detail. Two were narrow; 17 were clearly broadened, and 8 were very broad. The two with narrow strahl occurred when there were either no whistlers or very intermittent low amplitude waves. Six of the eight broadest distributions were associated with intense, long duration waves. Approximately half of the observed electron distributions have features consistent with an energy dependent scattering mechanism, as would be expected from interactions with narrowband waves. A comparison of the wave power in the whistler-mode frequency band to pitch angle width and a measure of anisotropy provides additional evidence for the electron scattering by whistler-mode waves. The pitch angle broadening occurs in over an energy range comparable to that obtained for the n=1 (co-streaming) resonance for the observed wave and plasma parameters. The additional observation that the heat flux is lower in the interval with multiple switchbacks may provide clues to the nature of switchbacks. These results provide strong evidence that the heat flux is reduced by narroweband whistler-mode waves scattering of strahl-energy electrons.
131 - L. Yu , S. Y. Huang , Z. G. Yuan 2020
We present a statistical analysis for the characteristics and radial evolution of linear magnetic holes (LMHs) in the solar wind from 0.166 to 0.82 AU using Parker Solar Probe observations of the first two orbits. It is found that the LMHs mainly have a duration less than 25 s and the depth is in the range from 0.25 to 0.7. The durations slightly increase and the depths become slightly deeper with the increasing heliocentric distance. Both the plasma temperature and the density for about 50% of all events inside the holes are higher than the ones surrounding the holes. The average occurrence rate is 8.7 events/day, much higher than that of the previous observations. The occurrence rate of the LMHs has no clear variation with the heliocentric distance (only a slight decreasing trend with the increasing heliocentric distance), and has several enhancements around ~0.525 AU and ~0.775 AU, implying that there may be new locally generated LMHs. All events are segmented into three parts (i.e., 0.27, 0.49 and 0.71 AU) to investigate the geometry evolution of the linear magnetic holes. The results show that the geometry of LMHs are prolonged both across and along the magnetic field direction from the Sun to the Earth, while the scales across the field extend a little faster than along the field. The present study could help us to understand the evolution and formation mechanism of the LMHs in the solar wind.
154 - Daniel Verscharen 2019
The solar wind is a magnetized plasma and as such exhibits collective plasma behavior associated with its characteristic spatial and temporal scales. The characteristic length scales include the size of the heliosphere, the collisional mean free paths of all species, their inertial lengths, their gyration radii, and their Debye lengths. The characteristic timescales include the expansion time, the collision times, and the periods associated with gyration, waves, and oscillations. We review the past and present research into the multi-scale nature of the solar wind based on in-situ spacecraft measurements and plasma theory. We emphasize that couplings of processes across scales are important for the global dynamics and thermodynamics of the solar wind. We describe methods to measure in-situ properties of particles and fields. We then discuss the role of expansion effects, non-equilibrium distribution functions, collisions, waves, turbulence, and kinetic microinstabilities for the multi-scale plasma evolution.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا