Do you want to publish a course? Click here

Solar cycle dependence of spatial correlation in the solar wind

161   0   0.0 ( 0 )
 Added by Robert Wicks
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the spatial correlation properties of the solar wind using simultaneous observations by the ACE and WIND spacecraft. We use mutual information as a nonlinear measure of correlation and compare this to linear correlation. We find that the correlation lengthscales of fluctuations in density and magnetic field magnitude vary strongly with the solar cycle, whereas correlation lengths of fluctuations in B field components do not. We find the correlation length of |B| ~ 120 Re at solar minimum and ~ 270 Re at maximum and the correlation length of density ~ 75 Re at minimum and ~ 170 Re at minimum. The components of the B field have correlation lengths ~ correlation length |B| at minimum.



rate research

Read More

300 - Daniel Verscharen 2019
We investigate the scattering of strahl electrons by microinstabilities as a mechanism for creating the electron halo in the solar wind. We develop a mathematical framework for the description of electron-driven microinstabilities and discuss the associated physical mechanisms. We find that an instability of the oblique fast-magnetosonic/whistler (FM/W) mode is the best candidate for a microinstability that scatters strahl electrons into the halo. We derive approximate analytic expressions for the FM/W instability threshold in two different $beta_{mathrm c}$ regimes, where $beta_{mathrm c}$ is the ratio of the core electrons thermal pressure to the magnetic pressure, and confirm the accuracy of these thresholds through comparison with numerical solutions to the hot-plasma dispersion relation. We find that the strahl-driven oblique FM/W instability creates copious FM/W waves under low-$beta_{mathrm c}$ conditions when $U_{0mathrm s}gtrsim 3w_{mathrm c}$, where $U_{0mathrm s}$ is the strahl speed and $w_{mathrm c}$ is the thermal speed of the core electrons. These waves have a frequency of about half the local electron gyrofrequency. We also derive an analytic expression for the oblique FM/W instability for $beta_{mathrm c}sim 1$. The comparison of our theoretical results with data from the emph{Wind} spacecraft confirms the relevance of the oblique FM/W instability for the solar wind. The whistler heat-flux, ion-acoustic heat-flux, kinetic-Alfven-wave heat-flux, and electrostatic electron-beam instabilities cannot fulfill the requirements for self-induced scattering of strahl electrons into the halo. We make predictions for the electron strahl close to the Sun, which will be tested by measurements from emph{Parker Solar Probe} and emph{Solar Orbiter}.
The recent launches of Parker Solar Probe (PSP), Solar Orbiter (SO) and BepiColombo, along with several older spacecraft, have provided the opportunity to study the solar wind at multiple latitudes and distances from the Sun simultaneously. We take advantage of this unique spacecraft constellation, along with low solar activity across two solar rotations between May and July 2020, to investigate how the solar wind structure, including the Heliospheric Current Sheet (HCS), varies with latitude. We visualise the sector structure of the inner heliosphere by ballistically mapping the polarity and solar wind speed from several spacecraft onto the Suns source surface. We then assess the HCS morphology and orientation with the in situ data and compare with a predicted HCS shape. We resolve ripples in the HCS on scales of a few degrees in longitude and latitude, finding that the local orientation of sector boundaries were broadly consistent with the shape of the HCS but were steepened with respect to a modelled HCS at the Sun. We investigate how several CIRs varied with latitude, finding evidence for the compression region affecting slow solar wind outside the latitude extent of the faster stream. We also identified several transient structures associated with HCS crossings, and speculate that one such transient may have disrupted the local HCS orientation up to five days after its passage. We have shown that the solar wind structure varies significantly with latitude, with this constellation providing context for solar wind measurements that would not be possible with a single spacecraft. These measurements provide an accurate representation of the solar wind within $pm 10^{circ}$ latitude, which could be used as a more rigorous constraint on solar wind models and space weather predictions. In the future, this range of latitudes will increase as SOs orbit becomes more inclined.
131 - L. Yu , S. Y. Huang , Z. G. Yuan 2020
We present a statistical analysis for the characteristics and radial evolution of linear magnetic holes (LMHs) in the solar wind from 0.166 to 0.82 AU using Parker Solar Probe observations of the first two orbits. It is found that the LMHs mainly have a duration less than 25 s and the depth is in the range from 0.25 to 0.7. The durations slightly increase and the depths become slightly deeper with the increasing heliocentric distance. Both the plasma temperature and the density for about 50% of all events inside the holes are higher than the ones surrounding the holes. The average occurrence rate is 8.7 events/day, much higher than that of the previous observations. The occurrence rate of the LMHs has no clear variation with the heliocentric distance (only a slight decreasing trend with the increasing heliocentric distance), and has several enhancements around ~0.525 AU and ~0.775 AU, implying that there may be new locally generated LMHs. All events are segmented into three parts (i.e., 0.27, 0.49 and 0.71 AU) to investigate the geometry evolution of the linear magnetic holes. The results show that the geometry of LMHs are prolonged both across and along the magnetic field direction from the Sun to the Earth, while the scales across the field extend a little faster than along the field. The present study could help us to understand the evolution and formation mechanism of the LMHs in the solar wind.
154 - Daniel Verscharen 2019
The solar wind is a magnetized plasma and as such exhibits collective plasma behavior associated with its characteristic spatial and temporal scales. The characteristic length scales include the size of the heliosphere, the collisional mean free paths of all species, their inertial lengths, their gyration radii, and their Debye lengths. The characteristic timescales include the expansion time, the collision times, and the periods associated with gyration, waves, and oscillations. We review the past and present research into the multi-scale nature of the solar wind based on in-situ spacecraft measurements and plasma theory. We emphasize that couplings of processes across scales are important for the global dynamics and thermodynamics of the solar wind. We describe methods to measure in-situ properties of particles and fields. We then discuss the role of expansion effects, non-equilibrium distribution functions, collisions, waves, turbulence, and kinetic microinstabilities for the multi-scale plasma evolution.
Aims: We present the first measurements of the solar-wind angular-momentum (AM) flux recorded by the Solar Orbiter spacecraft. Our aim is the validation of these measurements to support future studies of the Suns AM loss. Methods: We combine 60-minute averages of the proton bulk moments and the magnetic field measured by the Solar Wind Analyser (SWA) and the magnetometer (MAG) onboard Solar Orbiter. We calculate the AM flux per solid-angle element using data from the first orbit of the missions cruise phase during 2020. We separate the contributions from protons and from magnetic stresses to the total AM flux. Results: The AM flux varies significantly over time. The particle contribution typically dominates over the magnetic-field contribution during our measurement interval. The total AM flux shows the largest variation and is typically anti-correlated with the radial solar-wind speed. We identify a compression region, potentially associated with a co-rotating interaction region or a coronal mass ejection, that leads to a significant localised increase in the AM flux, yet without a significant increase in the AM per unit mass. We repeat our analysis using the density estimate from the Radio and Plasma Waves (RPW) instrument. Using this independent method, we find a decrease in the peaks of positive AM flux but otherwise consistent results. Conclusions: Our results largely agree with previous measurements of the solar-wind AM flux in terms of amplitude, variability, and dependence on radial solar-wind bulk speed. Our analysis highlights the potential for future, more detailed, studies of the solar winds AM and its other large-scale properties with data from Solar Orbiter. We emphasise the need to study the radial evolution and latitudinal dependence of the AM flux in combination with data from Parker Solar Probe and assets at heliocentric distances of 1 au and beyond.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا