Do you want to publish a course? Click here

Searching for fast extragalactic X-ray transients in Chandra surveys

425   0   0.0 ( 0 )
 Added by Guang Yang
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent works have discovered two fast ($approx 10$ ks) extragalactic X-ray transients in the Chandra Deep Field-South (CDF-S XT1 and XT2). These findings suggest that a large population of similar extragalactic transients might exist in archival X-ray observations. We develop a method that can effectively detect such transients in a single Chandra exposure, and systematically apply it to Chandra surveys of CDF-S, CDF-N, DEEP2, UDS, COSMOS, and E-CDF-S, totaling 19~Ms of exposure. We find 13 transient candidates, including CDF-S XT1 and XT2. With the aid of available excellent multiwavelength observations, we identify the physical nature of all these candidates. Aside from CDF-S XT1 and XT2, the other 11 sources are all stellar objects, and all of them have $z$-band magnitudes brighter than 20. We estimate an event rate of $59^{+77}_{-38} rm{evt yr^{-1} deg^{-2}}$ for CDF-S XT-like transients with 0.5-7 keV peak fluxes $log F_{rm peak} gtrsim -12.6$ (erg cm$^{-2}$ s$^{-1}$). This event rate translates to $approx 15^{+20}_{-10}$ transients existing among Chandra archival observations at Galactic latitudes $|b|>20^{circ}$, which can be probed in future work. Future missions such as Athena and the Einstein Probe with large grasps (effective area $times$ field of view) are needed to discover a large sample ($sim$ thousands) of fast extragalactic X-ray transients.



rate research

Read More

374 - P. Romano 2016
Supergiant fast X-ray transients (SFXTs) are high mass X-ray binaries (HMXBs) hosting a neutron star and an OB supergiant companion. We examine the available Swift data, as well as other new or archival/serendipitous data, on three sources: IGR J17407-2808, 2XMM J185114.3-000004, and IGR J18175-2419, whose X-ray characteristics qualify them as candidate SFXT, in order to explore their properties and test whether they are consistent with an SFXT nature. As IGR J17407-2808 and 2XMM J185114.3-000004 triggered the Burst Alert Telescope on board Swift, the Swift data allow us to provide their first arcsecond localisations, leading to an unequivocal identification of the source CXOU J174042.0-280724 as the soft X-ray counterpart of IGR J17407-2808, as well as their first broadband spectra, which can be fit with models generally describing accreting neutron stars in HMXBs. While still lacking optical spectroscopy to assess the spectral type of the companion, we propose 2XMM J185114.3-000004 as a very strong SFXT candidate. The nature of IGR J17407-2808 remains, instead, more uncertain. Its broad band properties cannot exclude that the emission originates from either a HMXB (and in that case, a SFXT) or, more likely, a low mass X-ray binary. Finally, based on the deep non-detection in our XRT monitoring campaign and a careful reanalysis of the original Integral data in which the discovery of the source was first reported, we show that IGR J18175-2419 is likely a spurious detection.
We present the discovery of two new X-ray transients in archival Chandra data. The first transient, XRT 110103, occurred in January 2011 and shows a sharp rise of at least three orders of magnitude in count rate in less than 10 s, a flat peak for about 20 s and decays by two orders of magnitude in the next 60 s. We find no optical or infrared counterpart to this event in preexisting survey data or in an observation taken by the SIRIUS instrument at the Infrared Survey Facility 2.1 yr after the transient, providing limiting magnitudes of J>18.1, H>17.6 and Ks>16.3. This event shows similarities to the transient previously reported in Jonker et al. which was interpreted as the possible tidal disruption of a white dwarf by an intermediate mass black hole. We discuss the possibility that these transients originate from the same type of event. If we assume these events are related a rough estimate of the rates gives 1.4*10^5 per year over the whole sky with a peak 0.3-7 keV X-ray flux greater than 2*10^-10 erg cm^-2 s^-1 . The second transient, XRT 120830, occurred in August 2012 and shows a rise of at least three orders of magnitude in count rate and a subsequent decay of around one order of magnitude all within 10 s, followed by a slower quasi-exponential decay over the remaining 30 ks of the observation. We detect a likely infrared counterpart with magnitudes J=16.70+/-0.06, H=15.92+/-0.04 and Ks=15.37+/-0.06 which shows an average proper motion of 74+/-19 milliarcsec per year compared to archival 2MASS observations. The JHKs magnitudes, proper motion and X-ray flux of XRT 120830 are consistent with a bright flare from a nearby late M or early L dwarf.
Most violent and energetic processes in our universe, including mergers of compact objects, explosions of massive stars and extreme accretion events, produce copious amounts of X-rays. X-ray follow-up is an efficient tool for identifying transients because (1) X-rays can quickly localize transients with large error circles, and (2) X-rays reveal the nature of transients that may not have unique signatures at other wavelengths. In this white paper, we identify key science questions about several extragalactic multi-messenger and multi-wavelength transients, and demonstrate how X-ray follow-up helps answer these questions
494 - Lara Sidoli 2013
Supergiant Fast X-ray Transients are a class of Galactic High Mass X-ray Binaries with supergiant companions. Their extreme transient X-ray flaring activity was unveiled thanks to INTEGRAL/IBIS observations. The SFXTs dynamic range, with X-ray luminosities from 1E32 erg/s to 1E37 erg/s, and long time intervals of low X-ray emission, are puzzling, given that both their donor star properties and their orbital and spin periodicities seem very similar to those displayed by massive binaries with persistent X-ray emission. Clumpy supergiant winds, accretion barriers, orbital geometries and wind anisotropies are often invoked to explain their behavior, but still several open issues remain. A review of the main recent observational results will be outlined, together with a summary of the new scenarios proposed to explain their bright flaring X-ray activity. The main result of a long Suzaku observation of the SFXT IGRJ16479-4514 with the shortest orbital period is also briefly summarized. The observation of the X-ray eclipse in this source allowed us to directly probe the supergiant wind density at the orbital separation, leading to the conclusion that it is too large to justify the low X-ray luminosity. A mechanism reducing the accretion rate onto the compact object is required.
90 - Lara Sidoli 2017
I present a brief up-to-date review of the current understanding of Supergiant Fast X-ray Transients, with an emphasis on the observational point of view. After more than a decade since their discovery, a remarkable progress has been made in getting the picture of their phenomenology at X-ray energies. However, a similar in-depth investigation of the properties of the supergiant companions is needed, but has started more recently. A multifrequency approach is the key to fully understand the physical mechanism driving the SFXT behaviour, still under debate.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا