Do you want to publish a course? Click here

Supergiant Fast X-ray Transients - a short review

91   0   0.0 ( 0 )
 Added by Lara Sidoli
 Publication date 2017
  fields Physics
and research's language is English
 Authors Lara Sidoli




Ask ChatGPT about the research

I present a brief up-to-date review of the current understanding of Supergiant Fast X-ray Transients, with an emphasis on the observational point of view. After more than a decade since their discovery, a remarkable progress has been made in getting the picture of their phenomenology at X-ray energies. However, a similar in-depth investigation of the properties of the supergiant companions is needed, but has started more recently. A multifrequency approach is the key to fully understand the physical mechanism driving the SFXT behaviour, still under debate.



rate research

Read More

477 - Lara Sidoli 2013
Supergiant Fast X-ray Transients are a class of Galactic High Mass X-ray Binaries with supergiant companions. Their extreme transient X-ray flaring activity was unveiled thanks to INTEGRAL/IBIS observations. The SFXTs dynamic range, with X-ray luminosities from 1E32 erg/s to 1E37 erg/s, and long time intervals of low X-ray emission, are puzzling, given that both their donor star properties and their orbital and spin periodicities seem very similar to those displayed by massive binaries with persistent X-ray emission. Clumpy supergiant winds, accretion barriers, orbital geometries and wind anisotropies are often invoked to explain their behavior, but still several open issues remain. A review of the main recent observational results will be outlined, together with a summary of the new scenarios proposed to explain their bright flaring X-ray activity. The main result of a long Suzaku observation of the SFXT IGRJ16479-4514 with the shortest orbital period is also briefly summarized. The observation of the X-ray eclipse in this source allowed us to directly probe the supergiant wind density at the orbital separation, leading to the conclusion that it is too large to justify the low X-ray luminosity. A mechanism reducing the accretion rate onto the compact object is required.
We review the status of our knowledge on supergiant fast X-ray transients (SFXTs), a new hot topic in multi wavelength studies of binaries. We discuss the mechanisms believed to power these transients and then highlight the unique contribution Swift is giving to this field, and how new technology complements and sometimes changes the view of things.
A fraction of high-mass X-ray binaries are supergiant fast X-ray transients. These systems have on average low X-ray luminosities, but display short flares during which their X-ray luminosity rises by a few orders of magnitude. The leading model for the physics governing this X-ray behaviour suggests that the winds of the donor OB supergiants are magnetized. In agreement with this model, the first spectropolarimetric observations of the SFXT IGR J11215-5952 using the FORS2 instrument at the Very Large Telescope indicate the presence of a kG longitudinal magnetic field. Based on these results, it seems possible that the key difference between supergiant fast X-ray transients and other high-mass X-ray binaries are the properties of the supergiants stellar wind and the physics of the winds interaction with the neutron star magnetosphere.
390 - P. Romano , V. Mangano 2013
We present a review of the Supergiant Fast X-ray Transients (SFXT) Project, a systematic investigation of the properties of SFXTs with a strategy that combines Swift monitoring programs with outburst follow-up observations. This strategy has quickly tripled the available sets of broad-band data of SFXT outbursts, and gathered a wealth of out-of-outburst data, which have led us to a broad-band spectral characterization, an assessment of the fraction of the time these sources spend in each phase, and their duty cycle of inactivity. We present some new observational results obtained through our outburst follow-ups, as fitting examples of the exceptional capabilities of Swift in catching bright flares and monitor them panchromatically.
519 - P. Romano 2012
Supergiant Fast X-ray Transients (SFXT) are a class of High-Mass X-ray Binaries whose optical counterparts are O or B supergiant stars, and whose X-ray outbursts are ~ 4 orders of magnitude brighter than the quiescent state. LOFT, the Large Observatory For X-ray Timing, with its coded mask Wide Field Monitor (WFM) and its 10 m^2 class collimated X-ray Large Area Detector (LAD), will be able to dramatically deepen the knowledge of this class of sources. It will provide simultaneous high S/N broad-band and time-resolved spectroscopy in several intensity states, and long term monitoring that will yield new determinations of orbital periods, as well as spin periods. We show the results of an extensive set of simulations performed using previous observational results of these sources obtained with Swift and XMM-Newton. The WFM will detect all SFXT flares within its field of view down to a 15-20 mCrab in 5ks. Our simulations describe the outbursts at several intensities (F_(2-10keV)=5.9x10^-9 to 5.5x10^-10 erg cm^-2 s^-1), the intermediate and most common state (10^-11 erg cm^-2 s^-1), and the low state (1.2x10^-12 to 5x10^-13 erg cm^-2 s^-1). We also considered large variations of N_H and the presence of emission lines, as observed by Swift and XMM-Newton.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا