No Arabic abstract
We discuss eigenstate correlations for ergodic, spatially extended many-body quantum systems, in terms of the statistical properties of matrix elements of local observables. While the eigenstate thermalization hypothesis (ETH) is known to give an excellent description of these quantities, the butterfly effect implies structure beyond ETH. We determine the universal form of this structure at long distances and small eigenvalue separations for Floquet systems. We use numerical studies of a Floquet quantum circuit to illustrate both the accuracy of ETH and the existence of our predicted additional correlations.
Free or integrable theories are usually considered to be too constrained to thermalize. For example, the retarded two-point function of a free field, even in a thermal state, does not decay to zero at long times. On the other hand, the magnetic susceptibility of the critical transverse field Ising is known to thermalize, even though that theory can be mapped by a Jordan-Wigner transformation to that of free fermions. We reconcile these two statements by clarifying under which conditions conserved charges can prevent relaxation at the level of linear response and how such obstruction can be overcome. In particular, we give a necessary condition for the decay of retarded Greens functions. We give explicit examples of composite operators in free theories that nevertheless satisfy that condition and therefore do thermalize. We call this phenomenon the Operator Thermalization Hypothesis as a converse to the Eigenstate Thermalization Hypothesis.
Complexity of dynamics is at the core of quantum many-body chaos and exhibits a hierarchical feature: higher-order complexity implies more chaotic dynamics. Conventional ergodicity in thermalization processes is a manifestation of the lowest order complexity, which is represented by the eigenstate thermalization hypothesis (ETH) stating that individual energy eigenstates are thermal. Here, we propose a higher-order generalization of the ETH, named the $ k $-ETH ($ k=1,2,dots $), to quantify higher-order complexity of quantum many-body dynamics at the level of individual energy eigenstates, where the lowest order ETH (1-ETH) is the conventional ETH. As a non-trivial contribution of the higher-order ETH, we show that the $ k $-ETH with $ kgeq 2 $ implies a universal behavior of the $ k $th Renyi entanglement entropy of individual energy eigenstates. In particular, the Page correction of the entanglement entropy originates from the higher-order ETH, while as is well known, the volume law can be accounted for by the 1-ETH. We numerically verify that the 2-ETH approximately holds for a nonintegrable system, but does not hold in the integrable case. To further investigate the information-theoretic feature behind the $ k $-ETH, we introduce a concept named a partial unitary $ k $-design (PU $ k $-design), which is an approximation of the Haar random unitary up to the $ k $th moment, where partial means that only a limited number of observables are accessible. The $ k $-ETH is a special case of a PU $ k $-design for the ensemble of Hamiltonian dynamics with random-time sampling. In addition, we discuss the relationship between the higher-order ETH and information scrambling quantified by out-of-time-ordered correlators. Our framework provides a unified view on thermalization, entanglement entropy, and unitary $ k $-designs, leading to deeper characterization of higher-order quantum complexity.
Many phases of matter, including superconductors, fractional quantum Hall fluids and spin liquids, are described by gauge theories with constrained Hilbert spaces. However, thermalization and the applicability of quantum statistical mechanics has primarily been studied in unconstrained Hilbert spaces. In this article, we investigate whether constrained Hilbert spaces permit local thermalization. Specifically, we explore whether the eigenstate thermalization hypothesis (ETH) holds in a pinned Fibonacci anyon chain, which serves as a representative case study. We first establish that the constrained Hilbert space admits a notion of locality, by showing that the influence of a measurement decays exponentially in space. This suggests that the constraints are no impediment to thermalization. We then provide numerical evidence that ETH holds for the diagonal and off-diagonal matrix elements of various local observables in a generic disorder-free non-integrable model. We also find that certain non-local observables obey ETH.
Under unitary time evolution, expectation values of physically reasonable observables often evolve towards the predictions of equilibrium statistical mechanics. The eigenstate thermalization hypothesis (ETH) states that this is also true already for individual energy eigenstates. Here we aim at elucidating the emergence of ETH for observables that can realistically be measured due to their high degeneracy, such as local, extensive or macroscopic observables. We bisect this problem into two parts, a condition on the relative overlaps and one on the relative phases between the eigenbases of the observable and Hamiltonian.
We use exact diagonalization to study the eigenstate thermalization hypothesis (ETH) in the quantum dimer model on the square and triangular lattices. Due to the nonergodicity of the local plaquette-flip dynamics, the Hilbert space, which consists of highly constrained close-packed dimer configurations, splits into sectors characterized by topological invariants. We show that this has important consequences for ETH: We find that ETH is clearly satisfied only when each topological sector is treated separately, and only for moderate ratios of the potential and kinetic terms in the Hamiltonian. By contrast, when the spectrum is treated as a whole, ETH breaks down on the square lattice, and apparently also on the triangular lattice. These results demonstrate that quantum dimer models have interesting thermalization dynamics.