Do you want to publish a course? Click here

Equation of state effects in the core collapse of a $20$-$M_odot$ star

69   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Uncertainties in our knowledge of the properties of dense matter near and above nuclear saturation density are among the main sources of variations in multi-messenger signatures predicted for core-collapse supernovae (CCSNe) and the properties of neutron stars (NSs). We construct 97 new finite-temperature equations of state (EOSs) of dense matter that obey current experimental, observational, and theoretical constraints and discuss how systematic variations in the EOS parameters affect the properties of cold nonrotating NSs and the core collapse of a $20,M_odot$ progenitor star. The core collapse of the $20,M_odot$ progenitor star is simulated in spherical symmetry using the general-relativistic radiation-hydrodynamics code GR1D where neutrino interactions are computed for each EOS using the NuLib library. We conclude that the effective mass of nucleons at densities above nuclear saturation density is the largest source of uncertainty in the CCSN neutrino signal and dynamics even though it plays a subdominant role in most properties of cold NS matter. Meanwhile, changes in other observables affect the properties of cold NSs, while having little effect in CCSNe. To strengthen our conclusions, we perform six octant three-dimensional CCSN simulations varying the effective mass of nucleons at nuclear saturation density. We conclude that neutrino heating and, thus, the likelihood of explosion is significantly increased for EOSs where the effective mass of nucleons at nuclear saturation density is large.



rate research

Read More

141 - H. Shen , H. Toki , K. Oyamatsu 2011
We construct the equation of state (EOS) of dense matter covering a wide range of temperature, proton fraction, and density for the use of core-collapse supernova simulations. The study is based on the relativistic mean-field (RMF) theory, which can provide an excellent description of nuclear matter and finite nuclei. The Thomas--Fermi approximation in combination with assumed nucleon distribution functions and a free energy minimization is adopted to describe the non-uniform matter, which is composed of a lattice of heavy nuclei. We treat the uniform matter and non-uniform matter consistently using the same RMF theory. We present two sets of EOS tables, namely EOS2 and EOS3. EOS2 is an update of our earlier work published in 1998 (EOS1), where only the nucleon degree of freedom is taken into account. EOS3 includes additional contributions from $Lambda$ hyperons. The effect of $Lambda$ hyperons on the EOS is negligible in the low-temperature and low-density region, whereas it tends to soften the EOS at high density. In comparison with EOS1, EOS2 and EOS3 have an improved design of ranges and grids, which covers the temperature range $T=0.1$--$10^{2.6}$ MeV with the logarithmic grid spacing $Delta log_{10}(T/rm{[MeV]})=0.04$ (92 points including T=0), the proton fraction range $Y_p=0$--0.65 with the linear grid spacing $Delta Y_p = 0.01$ (66 points), and the density range $rho_B=10^{5.1}$--$10^{16},rm{g,cm^{-3}}$ with the logarithmic grid spacing $Delta log_{10}(rho_B/rm{[g,cm^{-3}]}) = 0.1$ (110 points).
89 - K. Sumiyoshi 2005
We study the evolution of supernova core from the beginning of gravitational collapse of a 15Msolar star up to 1 second after core bounce. We present results of spherically symmetric simulations of core-collapse supernovae by solving general relativistic neutrino-radiation-hydrodynamics in the implicit time-differencing. We aim to explore the evolution of shock wave in a long term and investigate the formation of protoneutron star together with supernova neutrino signatures. These studies are done to examine the influence of equation of state (EOS) on the postbounce evolution of shock wave in the late phase and the resulting thermal evolution of protoneutron star. We make a comparison of two sets of EOS, that is, by Lattimer and Swesty (LS-EOS) and by Shen et al.(SH-EOS). We found that, for both EOSs, the core does not explode and the shock wave stalls similarly in the first 100 milliseconds after bounce. The revival of shock wave does not occur even after a long period in either cases. However, the recession of shock wave appears different beyond 200 milliseconds after bounce, having different thermal evolution of central core. A more compact protoneutron star is found for LS-EOS than SH-EOS with a difference in the central density by a factor of ~2 and a difference of ~10 MeV in the peak temperature. Resulting spectra of supernova neutrinos are different to the extent that may be detectable by terrestrial neutrino detectors.
143 - S. Richers 2017
Gravitational waves (GWs) generated by axisymmetric rotating collapse, bounce, and early postbounce phases of a galactic core-collapse supernova will be detectable by current-generation gravitational wave observatories. Since these GWs are emitted from the quadrupole-deformed nuclear-density core, they may encode information on the uncertain nuclear equation of state (EOS). We examine the effects of the nuclear EOS on GWs from rotating core collapse and carry out 1824 axisymmetric general-relativistic hydrodynamic simulations that cover a parameter space of 98 different rotation profiles and 18 different EOS. We show that the bounce GW signal is largely independent of the EOS and sensitive primarily to the ratio of rotational to gravitational energy, and at high rotation rates, to the degree of differential rotation. The GW frequency of postbounce core oscillations shows stronger EOS dependence that can be parameterized by the cores EOS-dependent dynamical frequency $sqrt{Gbar{rho}_c}$. We find that the ratio of the peak frequency to the dynamical frequency follows a universal trend that is obeyed by all EOS and rotation profiles and that indicates that the nature of the core oscillations changes when the rotation rate exceeds the dynamical frequency. We find that differences in the treatments of low-density nonuniform nuclear matter, of the transition from nonuniform to uniform nuclear matter, and in the description of nuclear matter up to around twice saturation density can mildly affect the GW signal. We find that approximations and uncertainties in electron capture rates can lead to variations in the GW signal that are of comparable magnitude to those due to different nuclear EOS. This emphasizes the need for reliable nuclear electron capture rates and for self-consistent multi-dimensional neutrino radiation-hydrodynamic simulations of rotating core collapse.
Core-collapse simulations of massive stars are performed using the equation of state (EOS) based on the microscopic variational calculation with realistic nuclear forces. The progenitor models with the initial masses of $15M_odot$, $9.6M_odot$, and $30M_odot$ are adopted as examples of the ordinary core-collapse supernova with a shock stall, the low-mass supernova with a successful explosion, and the black hole formation, respectively. Moreover, the neutrinos emitted from the stellar collapse are assessed. Then, the variational EOS is confirmed to work well in all cases. The EOS dependences of the dynamics, thermal structure, and neutrino emission of the stellar collapse are also investigated.
In this review article we discuss selected developments regarding the role of the equation of state (EOS) in simulations of core-collapse supernovae. There are no first-principle calculations of the state of matter under supernova conditions since a wide range of conditions is covered, in terms of density, temperature and isospin asymmetry. Instead, model EOS are commonly employed in supernova studies. These can be divided into regimes with intrinsically different degrees of freedom: heavy nuclei at low temperatures, inhomogeneous nuclear matter where light and heavy nuclei coexist together with unbound nucleons, and the transition to homogeneous matter at high densities and temperatures. In this article we discuss each of these phases with particular view on their role in supernova simulations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا