No Arabic abstract
In this review article we discuss selected developments regarding the role of the equation of state (EOS) in simulations of core-collapse supernovae. There are no first-principle calculations of the state of matter under supernova conditions since a wide range of conditions is covered, in terms of density, temperature and isospin asymmetry. Instead, model EOS are commonly employed in supernova studies. These can be divided into regimes with intrinsically different degrees of freedom: heavy nuclei at low temperatures, inhomogeneous nuclear matter where light and heavy nuclei coexist together with unbound nucleons, and the transition to homogeneous matter at high densities and temperatures. In this article we discuss each of these phases with particular view on their role in supernova simulations.
We construct the equation of state (EOS) of dense matter covering a wide range of temperature, proton fraction, and density for the use of core-collapse supernova simulations. The study is based on the relativistic mean-field (RMF) theory, which can provide an excellent description of nuclear matter and finite nuclei. The Thomas--Fermi approximation in combination with assumed nucleon distribution functions and a free energy minimization is adopted to describe the non-uniform matter, which is composed of a lattice of heavy nuclei. We treat the uniform matter and non-uniform matter consistently using the same RMF theory. We present two sets of EOS tables, namely EOS2 and EOS3. EOS2 is an update of our earlier work published in 1998 (EOS1), where only the nucleon degree of freedom is taken into account. EOS3 includes additional contributions from $Lambda$ hyperons. The effect of $Lambda$ hyperons on the EOS is negligible in the low-temperature and low-density region, whereas it tends to soften the EOS at high density. In comparison with EOS1, EOS2 and EOS3 have an improved design of ranges and grids, which covers the temperature range $T=0.1$--$10^{2.6}$ MeV with the logarithmic grid spacing $Delta log_{10}(T/rm{[MeV]})=0.04$ (92 points including T=0), the proton fraction range $Y_p=0$--0.65 with the linear grid spacing $Delta Y_p = 0.01$ (66 points), and the density range $rho_B=10^{5.1}$--$10^{16},rm{g,cm^{-3}}$ with the logarithmic grid spacing $Delta log_{10}(rho_B/rm{[g,cm^{-3}]}) = 0.1$ (110 points).
Core-collapse supernovae are among the most fascinating phenomena in astrophysics and provide a formidable challenge for theoretical investigation. They mark the spectacular end of the lives of massive stars and, in an explosive eruption, release as much energy as the sun produces during its whole life. A better understanding of the astrophysical role of supernovae as birth sites of neutron stars, black holes, and heavy chemical elements, and more reliable predictions of the observable signals from stellar death events are tightly linked to the solution of the long-standing puzzle how collapsing stars achieve to explode. In this article our current knowledge of the processes that contribute to the success of the explosion mechanism are concisely reviewed. After a short overview of the sequence of stages of stellar core-collapse events, the general properties of the progenitor-dependent neutrino emission will be briefly described. Applying sophisticated neutrino transport in axisymmetric (2D) simulations with general relativity as well as in simulations with an approximate treatment of relativistic effects, we could find successful neutrino-driven explosions for a growing set of progenitor stars. First results of three-dimensional (3D) models have been obtained, and magnetohydrodynamic simulations demonstrate that strong initial magnetic fields in the pre-collapse core can foster the onset of neutrino-powered supernova explosions even in nonrotating stars. These results are discussed in the context of the present controversy about the value of 2D simulations for exploring the supernova mechanism in realistic 3D environments, and they are interpreted against the background of the current disagreement on the question whether the standing accretion shock instability (SASI) or neutrino-driven convection is the crucial agency that supports the onset of the explosion.
Massive stars (M> 10Msun) end their lives with spectacular explosions due to gravitational collapse. The collapse turns the stars into compact objects such as neutron stars and black holes with the ejection of cosmic rays and heavy elements. Despite the importance of these astrophysical events, the mechanism of supernova explosions has been an unsolved issue in astrophysics. This is because clarification of the supernova dynamics requires the full knowledge of nuclear and neutrino physics at extreme conditions, and large-scale numerical simulations of neutrino radiation hydrodynamics in multi-dimensions. This article is a brief overview of the understanding (with difficulty) of the supernova mechanism through the recent advance of numerical modeling at supercomputing facilities. Numerical studies with the progress of nuclear physics are applied to follow the evolution of compact objects with neutrino emissions in order to reveal the birth of pulsars/black holes from the massive stars.
The equation of state and composition of matter are calculated for conditions typical for pre-collapse and early collapse stages in core collapse supernovae. The composition is evaluated under the assumption of nuclear statistical equilibrium, when the matter is considered as an `almost ideal gas with corrections due to thermal excitations of nuclei, to free nucleon degeneracy, and to Coulomb and surface energy corrections. The account of these corrections allows us to obtain the composition for densities a bit below the nuclear matter density. Through comparisons with the equation of state (EOS) developed by Shen et al. we examine the approximation of one representative nucleus used in most of recent supernova EOSs. We find that widely distributed compositions in the nuclear chart are different, depending on the mass formula, while the thermodynamical quantities are quite close to those in the Shens EOS.
We discuss the possible impact of strange quark matter on the evolution of core-collapse supernovae with emphasis on low critical densities for the quark-hadron phase transition. For such cases the hot proto-neutron star can collapse to a more compact hybrid star configuration hundreds of milliseconds after core-bounce. The collapse triggers the formation of a second shock wave. The latter leads to a successful supernova explosion and leaves an imprint on the neutrino signal. These dynamical features are discussed with respect to their compatibility with recent neutron star mass measurements which indicate a stiff high density nuclear matter equation of state.