No Arabic abstract
Distributed energy resources (DERs) can serve as non-wire alternatives (NWAs) to capacity expansion by managing peak load to avoid or delay traditional expansion projects. However, the value stream derived from using DERs as NWAs is usually not explicitly included in DER planning problems. In this paper, we study a planning problem that co-optimizes investment and operation of DERs and the timing of capacity expansion. By including the timing of capacity expansion as a decision variable, we naturally incorporate NWA value stream of DERs into the planning problem. Furthermore, we show that even though the resulting optimization problem could have millions of variables and is non-convex, an optimal solution can be found by solving a series of smaller linear problems. Finally, we present a NWAs planning problem using real data from the Seattle Campus of the University of Washington.
As microgrids have advanced from early prototypes to relatively mature technologies, converting data center integrated commercial buildings to microgrids provides economic, reliability and resiliency enhancements for the building owners. Thus, microgrid design and economically sizing distributed energy resources (DER) are becoming more demanding to gain widespread microgrids commercial viability. In this paper, an optimal DER sizing formulation for a hybrid AC/DC microgrid configuration has been proposed to leverage all benefits that AC or DC microgrid could solely contribute. Energy storage (ES), photovoltaics (PV) and power electronics devices are coordinately sized for economic grid-connected and reliable islanded operations. Time-of-use (TOU) energy usages charges and peak demand charges are explicitly modeled to achieve maximum level of cost savings. Numerical results obtained from a real commercial building load demonstrate the benefits of the proposed approach and the importance of jointly sizing DER for the grid-connected and islanded modes.
We consider the problem of dispatching a fleet of heterogeneous energy storage units to provide grid support. Under the restriction that recharging is not possible during the time frame of interest, we develop an aggregate measure of fleet flexibility with an intuitive graphical interpretation. This analytical expression summarises the full set of demand traces that the fleet can satisfy, and can be used for immediate and straightforward determination of the feasibility of any service request. This representation therefore facilitates a wide range of capability assessments, such as flexibility comparisons between fleets or the determination of a fleets ability to deliver ancillary services. Examples are shown of applications to fleet flexibility comparisons, signal feasibility assessment and the optimisation of ancillary service provision.
The increasing penetration of distributed energy resources (DERs) in the distribution networks has turned the conventionally passive load buses into active buses that can provide grid services for the transmission system. To take advantage of the DERs in the distribution networks, this letter formulates a transmission-and-distribution (T&D) systems co-optimization problem that achieves economic dispatch at the transmission level and optimal voltage regulation at the distribution level by leveraging large generators and DERs. A primal-dual gradient algorithm is proposed to solve this optimization problem jointly for T&D systems, and a distributed market-based equivalent of the gradient algorithm is used for practical implementation. The results are corroborated by numerical examples with the IEEE 39-Bus system connected with 7 different distribution networks.
It is likely that electricity storage will play a significant role in the balancing of future energy systems. A major challenge is then that of how to assess the contribution of storage to capacity adequacy, i.e. to the ability of such systems to meet demand. This requires an understanding of how to optimally schedule multiple storage facilities. The present paper studies this problem in the cases where the objective is the minimisation of expected energy unserved (EEU) and also a form of weighted EEU in which the unit cost of unserved energy is higher at higher levels of unmet demand. We also study how the contributions of individual stores may be identified for the purposes of their inclusion in electricity capacity markets.
We consider the problem of dispatching a fleet of distributed energy reserve devices to collectively meet a sequence of power requests over time. Under the restriction that reserves cannot be replenished, we aim to maximise the survival time of an energy-constrained islanded electrical system; and we discuss realistic scenarios in which this might be the ultimate goal of the grid operator. We present a policy that achieves this optimality, and generalise this into a set-theoretic result that implies there is no better policy available, regardless of the realised energy requirement scenario.