Do you want to publish a course? Click here

Robustly Maximal Utilisation of Energy-Constrained Distributed Resources

79   0   0.0 ( 0 )
 Added by Michael Evans
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

We consider the problem of dispatching a fleet of distributed energy reserve devices to collectively meet a sequence of power requests over time. Under the restriction that reserves cannot be replenished, we aim to maximise the survival time of an energy-constrained islanded electrical system; and we discuss realistic scenarios in which this might be the ultimate goal of the grid operator. We present a policy that achieves this optimality, and generalise this into a set-theoretic result that implies there is no better policy available, regardless of the realised energy requirement scenario.



rate research

Read More

We consider the problem of dispatching a fleet of heterogeneous energy storage units to provide grid support. Under the restriction that recharging is not possible during the time frame of interest, we develop an aggregate measure of fleet flexibility with an intuitive graphical interpretation. This analytical expression summarises the full set of demand traces that the fleet can satisfy, and can be used for immediate and straightforward determination of the feasibility of any service request. This representation therefore facilitates a wide range of capability assessments, such as flexibility comparisons between fleets or the determination of a fleets ability to deliver ancillary services. Examples are shown of applications to fleet flexibility comparisons, signal feasibility assessment and the optimisation of ancillary service provision.
This paper proposes a market clearing mechanism for energy trading in a local transactive market, where each player can participate in the market as seller or buyer and tries to maximize its welfare individually. Market players send their demand and supply to a local data center, where clearing price is determined to balance demand and supply. The topology of the grid and associated network constraints are considered to compute a price signal in the data center to keep the system secure by applying this signal to the corresponding players. The proposed approach needs only the demanded/supplied power by each player to reach global optimum which means that utility and cost function parameters would remain private. Also, this approach uses distributed method by applying local market clearing price as coordination information and direct load flow (DLF) for power flow calculation saving computation resources and making it suitable for online and automatic operation for a market with a large number of players. The proposed method is tested on a market with 50 players and simulation results show that the convergence is guaranteed and the proposed distributed method can reach the same result as conventional centralized approach.
We consider a control problem involving several agents coupled through multiple unit-demand resources. Such resources are indivisible, and each agents consumption is modeled as a Bernoulli random variable. Controlling the number of such agents in a probabilistic manner, subject to capacity constraints, is ubiquitous in smart cities. For instance, such agents can be humans in a feedback loop---who respond to a price signal, or automated decision-support systems that strive toward system-level goals. In this paper, we consider both single feedback loop corresponding to a single resource and multiple coupled feedback loops corresponding to multiple resources consumed by the same population of agents. For example, when a network of devices allocates resources to deliver several services, these services are coupled through capacity constraints on the resources. We propose a new algorithm with fundamental guarantees of convergence and optimality, as well as present an example illustrating its performance.
A new distributed MPC algorithm for the regulation of dynamically coupled subsystems is presented in this paper. The current control action is computed via two robust controllers working in a nested fashion. The inner controller builds a nominal reference trajectory from a decentralized perspective. The outer controller uses this information to take into account the effects of the coupling and generate a distributed control action. The tube-based approach to robustness is employed. A supplementary constraint is included in the outer optimization problem to provide recursive feasibility of the overall controller
In several smart city applications, multiple resources must be allocated among competing agents that are coupled through such shared resources and are constrained --- either through limitations of communication infrastructure or privacy considerations. We propose a distributed algorithm to solve such distributed multi-resource allocation problems with no direct inter-agent communication. We do so by extending a recently introduced additive-increase multiplicative-decrease (AIMD) algorithm, which only uses very little communication between the system and agents. Namely, a control unit broadcasts a one-bit signal to agents whenever one of the allocated resources exceeds capacity. Agents then respond to this signal in a probabilistic manner. In the proposed algorithm, each agent makes decision of its resource demand locally and an agent is unaware of the resource allocation of other agents. In empirical results, we observe that the average allocations converge over time to optimal allocations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا