Do you want to publish a course? Click here

ArSentD-LEV: A Multi-Topic Corpus for Target-based Sentiment Analysis in Arabic Levantine Tweets

190   0   0.0 ( 0 )
 Added by Ramy Baly
 Publication date 2019
and research's language is English
 Authors Ramy Baly




Ask ChatGPT about the research

Sentiment analysis is a highly subjective and challenging task. Its complexity further increases when applied to the Arabic language, mainly because of the large variety of dialects that are unstandardized and widely used in the Web, especially in social media. While many datasets have been released to train sentiment classifiers in Arabic, most of these datasets contain shallow annotation, only marking the sentiment of the text unit, as a word, a sentence or a document. In this paper, we present the Arabic Sentiment Twitter Dataset for the Levantine dialect (ArSenTD-LEV). Based on findings from analyzing tweets from the Levant region, we created a dataset of 4,000 tweets with the following annotations: the overall sentiment of the tweet, the target to which the sentiment was expressed, how the sentiment was expressed, and the topic of the tweet. Results confirm the importance of these annotations at improving the performance of a baseline sentiment classifier. They also confirm the gap of training in a certain domain, and testing in another domain.



rate research

Read More

Nowadays, it is no more needed to do an enormous effort to distribute a lot of forms to thousands of people and collect them, then convert this from into electronic format to track people opinion about some subjects. A lot of web sites can today reach a large spectrum with less effort. The majority of web sites suggest to their visitors to leave backups about their feeling of the site or events. So, this makes for us a lot of data which need powerful mean to exploit. Opinion mining in the web becomes more and more an attracting task, due the increasing need for individuals and societies to track the mood of people against several subjects of daily life (sports, politics, television,...). A lot of works in opinion mining was developed in western languages especially English, such works in Arabic language still very scarce. In this paper, we propose our approach, for opinion mining in Arabic Algerian news paper. CCS CONCEPTS $bullet$Information systems~Sentiment analysis $bullet$ Computing methodologies~Natural language processing
In aspect-based sentiment analysis, extracting aspect terms along with the opinions being expressed from user-generated content is one of the most important subtasks. Previous studies have shown that exploiting connections between aspect and opinion terms is promising for this task. In this paper, we propose a novel joint model that integrates recursive neural networks and conditional random fields into a unified framework for explicit aspect and opinion terms co-extraction. The proposed model learns high-level discriminative features and double propagate information between aspect and opinion terms, simultaneously. Moreover, it is flexible to incorporate hand-crafted features into the proposed model to further boost its information extraction performance. Experimental results on the SemEval Challenge 2014 dataset show the superiority of our proposed model over several baseline methods as well as the winning systems of the challenge.
190 - Xiaoyu Xing , Zhijing Jin , Di Jin 2020
Aspect-based sentiment analysis (ABSA) aims to predict the sentiment towards a specific aspect in the text. However, existing ABSA test sets cannot be used to probe whether a model can distinguish the sentiment of the target aspect from the non-target aspects. To solve this problem, we develop a simple but effective approach to enrich ABSA test sets. Specifically, we generate new examples to disentangle the confounding sentiments of the non-target aspects from the target aspects sentiment. Based on the SemEval 2014 dataset, we construct the Aspect Robustness Test Set (ARTS) as a comprehensive probe of the aspect robustness of ABSA models. Over 92% data of ARTS show high fluency and desired sentiment on all aspects by human evaluation. Using ARTS, we analyze the robustness of nine ABSA models, and observe, surprisingly, that their accuracy drops by up to 69.73%. We explore several ways to improve aspect robustness, and find that adversarial training can improve models performance on ARTS by up to 32.85%. Our code and new test set are available at https://github.com/zhijing-jin/ARTS_TestSet
We propose a topic-dependent attention model for sentiment classification and topic extraction. Our model assumes that a global topic embedding is shared across documents and employs an attention mechanism to derive local topic embedding for words and sentences. These are subsequently incorporated in a modified Gated Recurrent Unit (GRU) for sentiment classification and extraction of topics bearing different sentiment polarities. Those topics emerge from the words local topic embeddings learned by the internal attention of the GRU cells in the context of a multi-task learning framework. In this paper, we present the hierarchical architecture, the new GRU unit and the experiments conducted on users reviews which demonstrate classification performance on a par with the state-of-the-art methodologies for sentiment classification and topic coherence outperforming the current approaches for supervised topic extraction. In addition, our model is able to extract coherent aspect-sentiment clusters despite using no aspect-level annotations for training.
In the past few years, the growth of e-commerce and digital marketing in Vietnam has generated a huge volume of opinionated data. Analyzing those data would provide enterprises with insight for better business decisions. In this work, as part of the Advosights project, we study sentiment analysis of product reviews in Vietnamese. The final solution is based on Self-attention neural networks, a flexible architecture for text classification task with about 90.16% of accuracy in 0.0124 second, a very fast inference time.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا