Do you want to publish a course? Click here

Entity-Centric Contextual Affective Analysis

170   0   0.0 ( 0 )
 Added by Anjalie Field
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

While contextualized word representations have improved state-of-the-art benchmarks in many NLP tasks, their potential usefulness for social-oriented tasks remains largely unexplored. We show how contextualized word embeddings can be used to capture affect dimensions in portrayals of people. We evaluate our methodology quantitatively, on held-out affect lexicons, and qualitatively, through case examples. We find that contextualized word representations do encode meaningful affect information, but they are heavily biased towards their training data, which limits their usefulness to in-domain analyses. We ultimately use our method to examine differences in portrayals of men and women.



rate research

Read More

Specific lexical choices in narrative text reflect both the writers attitudes towards people in the narrative and influence the audiences reactions. Prior work has examined descriptions of people in English using contextual affective analysis, a natural language processing (NLP) technique that seeks to analyze how people are portrayed along dimensions of power, agency, and sentiment. Our work presents an extension of this methodology to multilingual settings, which is enabled by a new corpus that we collect and a new multilingual model. We additionally show how word connotations differ across languages and cultures, highlighting the difficulty of generalizing existing English datasets and methods. We then demonstrate the usefulness of our method by analyzing Wikipedia biography pages of members of the LGBT community across three languages: English, Russian, and Spanish. Our results show systematic differences in how the LGBT community is portrayed across languages, surfacing cultural differences in narratives and signs of social biases. Practically, this model can be used to identify Wikipedia articles for further manual analysis -- articles that might contain content gaps or an imbalanced representation of particular social groups.
159 - Wenxuan Zhou , Muhao Chen 2021
Recent information extraction approaches have relied on training deep neural models. However, such models can easily overfit noisy labels and suffer from performance degradation. While it is very costly to filter noisy labels in large learning resources, recent studies show that such labels take more training steps to be memorized and are more frequently forgotten than clean labels, therefore are identifiable in training. Motivated by such properties, we propose a simple co-regularization framework for entity-centric information extraction, which consists of several neural models with identical structures but different parameter initialization. These models are jointly optimized with the task-specific losses and are regularized to generate similar predictions based on an agreement loss, which prevents overfitting on noisy labels. Extensive experiments on two widely used but noisy benchmarks for information extraction, TACRED and CoNLL03, demonstrate the effectiveness of our framework. We release our code to the community for future research.
We propose a method for online news stream clustering that is a variant of the non-parametric streaming K-means algorithm. Our model uses a combination of sparse and dense document representations, aggregates document-cluster similarity along these multiple representations and makes the clustering decision using a neural classifier. The weighted document-cluster similarity model is learned using a novel adaptation of the triplet loss into a linear classification objective. We show that the use of a suitable fine-tuning objective and external knowledge in pre-trained transformer models yields significant improvements in the effectiveness of contextual embeddings for clustering. Our model achieves a new state-of-the-art on a standard stream clustering dataset of English documents.
85 - Caleb Ziems , Diyi Yang 2021
Framing has significant but subtle effects on public opinion and policy. We propose an NLP framework to measure entity-centric frames. We use it to understand media coverage on police violence in the United States in a new Police Violence Frames Corpus of 82k news articles spanning 7k police killings. Our work uncovers more than a dozen framing devices and reveals significant differences in the way liberal and conservative news sources frame both the issue of police violence and the entities involved. Conservative sources emphasize when the victim is armed or attacking an officer and are more likely to mention the victims criminal record. Liberal sources focus more on the underlying systemic injustice, highlighting the victims race and that they were unarmed. We discover temporary spikes in these injustice frames near high-profile shooting events, and finally, we show protest volume correlates with and precedes media framing decisions.
67 - Anjalie Field , Gayatri Bhat , 2019
In October 2017, numerous women accused producer Harvey Weinstein of sexual harassment. Their stories encouraged other women to voice allegations of sexual harassment against many high profile men, including politicians, actors, and producers. These events are broadly referred to as the #MeToo movement, named for the use of the hashtag #metoo on social media platforms like Twitter and Facebook. The movement has widely been referred to as empowering because it has amplified the voices of previously unheard women over those of traditionally powerful men. In this work, we investigate dynamics of sentiment, power and agency in online media coverage of these events. Using a corpus of online media articles about the #MeToo movement, we present a contextual affective analysis---an entity-centric approach that uses contextualized lexicons to examine how people are portrayed in media articles. We show that while these articles are sympathetic towards women who have experienced sexual harassment, they consistently present men as most powerful, even after sexual assault allegations. While we focus on media coverage of the #MeToo movement, our method for contextual affective analysis readily generalizes to other domains.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا