We present a solution for the F-symbols of the H3 fusion category, which is Morita equivalent to the even parts of the Haagerup subfactor. This solution has been computed by solving the pentagon equations and using several properties of trivalent categories.
We provide axioms that guarantee a category is equivalent to that of continuous linear functions between Hilbert spaces. The axioms are purely categorical and do not presuppose any analytical structure. This addresses a question about the mathematical foundations of quantum theory raised in reconstruction programmes such as those of von Neumann, Mackey, Jauch, Piron, Abramsky, and Coecke.
We give an action of the symmetric group on non-commuting indeterminates in terms of series in the corresponding Malcev-Newmann division ring. The action is constructed from the non-Abelian Hirota-Miwa (discrete KP) system. The corresponding companion map, which gives generators of the action, is discussed in the generic case and the corresponding explicit formulas have been found in the periodic reduction. We discuss also briefly connection of the companion to the KP map with context-free languages.
We revisit the definition of the 6j-symbols from the modular double of U_q(sl(2,R)), referred to as b-6j symbols. Our new results are (i) the identification of particularly natural normalization conditions, and (ii) new integral representations for this object. This is used to briefly discuss possible applications to quantum hyperbolic geometry, and to the study of certain supersymmetric gauge theories. We show, in particular, that the b-6j symbol has leading semiclassical asymptotics given by the volume of a non-ideal tetrahedron. We furthermore observe a close relation with the problem to quantize natural Darboux coordinates for moduli spaces of flat connections on Riemann surfaces related to the Fenchel-Nielsen coordinates. Our new integral representations finally indicate a possible interpretation of the b-6j symbols as partition functions of three-dimensional N=2 supersymmetric gauge theories.
Let K be the Lie superalgebra of contact vector fields on the supersymmetric line. We compute the action of K on the modules of differential and pseudodifferential operators between spaces of tensor densities, in terms of their conformal symbols. As applications we deduce the geometric subsymbols, 1-cohomology, and various uniserial subquotients of these modules. We also outline the computation of the K-equivalences and symmetries of their subquotients.
The rank $n$ symplectic oscillator Lie algebra $mathfrak{g}_n$ is the semidirect product of the symplectic Lie algebra $mathfrak{sp}_{2n}$ and the Heisenberg Lie algebra $H_n$. In this paper, we study weight modules with finite dimensional weight spaces over $mathfrak{g}_n$. When $dot z eq 0$, it is shown that there is an equivalence between the full subcategory $mathcal{O}_{mathfrak{g}_n}[dot z]$ of the BGG category $mathcal{O}_{mathfrak{g}_n}$ for $mathfrak{g}_n$ and the BGG category $mathcal{O}_{mathfrak{sp}_{2n}}$ for $mathfrak{sp}_{2n}$. Then using the technique of localization and the structure of generalized highest weight modules, we also give the classification of simple weight modules over $mathfrak{g}_n$ with finite-dimensional weight spaces.