No Arabic abstract
We present a conceptually clear and algorithmically useful framework for parameterizing the costs of tensor network contraction. Our framework is completely general, applying to tensor networks with arbitrary bond dimensions, open legs, and hyperedges. The fundamental objects of our framework are rooted and unrooted contraction trees, which represent classes of contraction orders. Properties of a contraction tree correspond directly and precisely to the time and space costs of tensor network contraction. The properties of rooted contraction trees give the costs of parallelized contraction algorithms. We show how contraction trees relate to existing tree-like objects in the graph theory literature, bringing to bear a wide range of graph algorithms and tools to tensor network contraction. Independent of tensor networks, we show that the edge congestion of a graph is almost equal to the branchwidth of its line graph.
We present a new strategy for contracting tensor networks in arbitrary geometries. This method is designed to follow as strictly as possible the renormalization group philosophy, by first contracting tensors in an exact way and, then, performing a controlled truncation of the resulting tensor. We benchmark this approximation procedure in two dimensions against an exact contraction. We then apply the same idea to a three dimensional system. The underlying rational for emphasizing the exact coarse graining renormalization group step prior to truncation is related to monogamy of entanglement.
Tensor networks are powerful factorization techniques which reduce resource requirements for numerically simulating principal quantum many-body systems and algorithms. The computational complexity of a tensor network simulation depends on the tensor ranks and the order in which they are contracted. Unfortunately, computing optimal contraction sequences (orderings) in general is known to be a computationally difficult (NP-complete) task. In 2005, Markov and Shi showed that optimal contraction sequences correspond to optimal (minimum width) tree decompositions of a tensor networks line graph, relating the contraction sequence problem to a rich literature in structural graph theory. While treewidth-based methods have largely been ignored in favor of dataset-specific algorithms in the prior tensor networks literature, we demonstrate their practical relevance for problems arising from two distinct methods used in quantum simulation: multi-scale entanglement renormalization ansatz (MERA) datasets and quantum circuits generated by the quantum approximate optimization algorithm (QAOA). We exhibit multiple regimes where treewidth-based algorithms outperform domain-specific algorithms, while demonstrating that the optimal choice of algorithm has a complex dependence on the network density, expected contraction complexity, and user run time requirements. We further provide an open source software framework designed with an emphasis on accessibility and extendability, enabling replicable experimental evaluations and future exploration of competing methods by practitioners.
We discuss in detail algorithms for implementing tensor network renormalization (TNR) for the study of classical statistical and quantum many-body systems. Firstly, we recall established techniques for how the partition function of a 2D classical many-body system or the Euclidean path integral of a 1D quantum system can be represented as a network of tensors, before describing how TNR can be implemented to efficiently contract the network via a sequence of coarse-graining transformations. The efficacy of the TNR approach is then benchmarked for the 2D classical statistical and 1D quantum Ising models; in particular the ability of TNR to maintain a high level of accuracy over sustained coarse-graining transformations, even at a critical point, is demonstrated.
Tensor contraction (TC) is an important computational kernel widely used in numerous applications. It is a multi-dimensional generalization of matrix multiplication (GEMM). While Strassens algorithm for GEMM is well studied in theory and practice, extending it to accelerate TC has not been previously pursued. Thus, we believe this to be the first paper to demonstrate how one can in practice speed up tensor contraction with Strassens algorithm. By adopting a Block-Scatter-Matrix format, a novel matrix-centric tensor layout, we can conceptually view TC as GEMM for a general stride storage, with an implicit tensor-to-matrix transformation. This insight enables us to tailor a recent state-of-the-art implementation of Strassens algorithm to TC, avoiding explicit transpositions (permutations) and extra workspace, and reducing the overhead of memory movement that is incurred. Performance benefits are demonstrated with a performance model as well as in practice on modern single core, multicore, and distributed memory parallel architectures, achieving up to 1.3x speedup. The resulting implementations can serve as a drop-in replacement for various applications with significant speedup.
We present several results relating to the contraction of generic tensor networks and discuss their application to the simulation of quantum many-body systems using variational approaches based upon tensor network states. Given a closed tensor network $mathcal{T}$, we prove that if the environment of a single tensor from the network can be evaluated with computational cost $kappa$, then the environment of any other tensor from $mathcal{T}$ can be evaluated with identical cost $kappa$. Moreover, we describe how the set of all single tensor environments from $mathcal{T}$ can be simultaneously evaluated with fixed cost $3kappa$. The usefulness of these results, which are applicable to a variety of tensor network methods, is demonstrated for the optimization of a Multi-scale Entanglement Renormalization Ansatz (MERA) for the ground state of a 1D quantum system, where they are shown to substantially reduce the computation time.