Do you want to publish a course? Click here

Data assimilation in price formation

189   0   0.0 ( 0 )
 Added by Martin Burger
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

We consider the problem of estimating the density of buyers and vendors in a nonlinear parabolic price formation model using measurements of the price and the transaction rate. Our approach is based on a work by Puel et al., see cite{Puel2002}, and results in a optimal control problem. We analyse this problems and provide stability estimates for the controls as well as the unknown density in the presence of measurement errors. Our analytic findings are supported with numerical experiments.



rate research

Read More

We propose a mean-field optimal control problem for the parameter identification of a given pattern. The cost functional is based on the Wasserstein distance between the probability measures of the modeled and the desired patterns. The first-order optimality conditions corresponding to the optimal control problem are derived using a Lagrangian approach on the mean-field level. Based on these conditions we propose a gradient descent method to identify relevant parameters such as angle of rotation and force scaling which may be spatially inhomogeneous. We discretize the first-order optimality conditions in order to employ the algorithm on the particle level. Moreover, we prove a rate for the convergence of the controls as the number of particles used for the discretization tends to infinity. Numerical results for the spatially homogeneous case demonstrate the feasibility of the approach.
151 - Shushu Zhang , Vivak Patel 2020
With the increasing penetration of high-frequency sensors across a number of biological and physical systems, the abundance of the resulting observations offers opportunities for higher statistical accuracy of down-stream estimates, but their frequency results in a plethora of computational problems in data assimilation tasks. The high-frequency of these observations has been traditionally dealt with by using data modification strategies such as accumulation, averaging, and sampling. However, these data modification strategies will reduce the quality of the estimates, which may be untenable for many systems. Therefore, to ensure high-quality estimates, we adapt stochastic approximation methods to address the unique challenges of high-frequency observations in data assimilation. As a result, we are able to produce estimates that leverage all of the observations in a manner that avoids the aforementioned computational problems and preserves the statistical accuracy of the estimates.
This paper is concerned with the recovery of (approximate) solutions to parabolic problems from incomplete and possibly inconsistent observational data, given on a time-space cylinder that is a strict subset of the computational domain under consideration. Unlike previous approaches to this and related problems our starting point is a regularized least squares formulation in a continuous infinite-dimensional setting that is based on stable variational time-space formulations of the parabolic PDE. This allows us to derive a priori as well as a posteriori error bounds for the recovered states with respect to a certain reference solution. In these bounds the regularization parameter is disentangled from the underlying discretization. An important ingredient for the derivation of a posteriori bounds is the construction of suitable Fortin operators which allow us to control oscillation errors stemming from the discretization of dual norms. Moreover, the variational framework allows us to contrive preconditioners for the discrete problems whose application can be performed in linear time, and for which the condition numbers of the preconditioned systems are uniformly proportional to that of the regularized continuous problem. In particular, we provide suitable stopping criteria for the iterative solvers based on the a posteriori error bounds. The presented numerical experiments quantify the theoretical findings and demonstrate the performance of the numerical scheme in relation with the underlying discretization and regularization.
There exist many ways to stabilize an infinite-dimensional linear autonomous control systems when it is possible. Anyway, finding an exponentially stabilizing feedback control that is as simple as possible may be a challenge. The Riccati theory provides a nice feedback control but may be computationally demanding when considering a discretization scheme. Proper Orthogonal Decomposition (POD) offers a popular way to reduce large-dimensional systems. In the present paper, we establish that, under appropriate spectral assumptions, an exponentially stabilizing feedback Riccati control designed from a POD finite-dimensional approximation of the system stabilizes as well the infinite-dimensional control system.
131 - Guannan Hu , Sarah L. Dance 2021
Recent studies have demonstrated improved skill in numerical weather prediction via the use of spatially correlated observation error covariance information in data assimilation systems. In this case, the observation weighting matrices (inverse error covariance matrices) used in the assimilation may be full matrices rather than diagonal. Thus, the computation of matrix-vector products in the variational minimization problem may be very time-consuming, particularly if the parallel computation of the matrix-vector product requires a high degree of communication between processing elements. Hence, we introduce a well-known numerical approximation method, called the fast multipole method (FMM), to speed up the matrix-vector multiplications in data assimilation. We explore a particular type of FMM that uses a singular value decomposition (SVD-FMM) and adjust it to suit our new application in data assimilation. By approximating a large part of the computation of the matrix-vector product, the SVD-FMM technique greatly reduces the computational complexity compared with the standard approach. We develop a novel possible parallelization scheme of the SVD-FMM for our application, which can reduce the communication costs. We investigate the accuracy of the SVD-FMM technique in several numerical experiments: we first assess the accuracy using covariance matrices that are created using different correlation functions and lengthscales; then investigate the impact of reconditioning the covariance matrices on the accuracy; and finally examine the feasibility of the technique in the presence of missing observations. We also provide theoretical explanations for some numerical results. Our results show that the SVD-FMM technique has potential as an efficient technique for assimilation of a large volume of observational data within a short time interval.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا