Do you want to publish a course? Click here

Efficient computation of matrix-vector products with full observation weighting matrices in data assimilation

132   0   0.0 ( 0 )
 Added by Guannan Hu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Recent studies have demonstrated improved skill in numerical weather prediction via the use of spatially correlated observation error covariance information in data assimilation systems. In this case, the observation weighting matrices (inverse error covariance matrices) used in the assimilation may be full matrices rather than diagonal. Thus, the computation of matrix-vector products in the variational minimization problem may be very time-consuming, particularly if the parallel computation of the matrix-vector product requires a high degree of communication between processing elements. Hence, we introduce a well-known numerical approximation method, called the fast multipole method (FMM), to speed up the matrix-vector multiplications in data assimilation. We explore a particular type of FMM that uses a singular value decomposition (SVD-FMM) and adjust it to suit our new application in data assimilation. By approximating a large part of the computation of the matrix-vector product, the SVD-FMM technique greatly reduces the computational complexity compared with the standard approach. We develop a novel possible parallelization scheme of the SVD-FMM for our application, which can reduce the communication costs. We investigate the accuracy of the SVD-FMM technique in several numerical experiments: we first assess the accuracy using covariance matrices that are created using different correlation functions and lengthscales; then investigate the impact of reconditioning the covariance matrices on the accuracy; and finally examine the feasibility of the technique in the presence of missing observations. We also provide theoretical explanations for some numerical results. Our results show that the SVD-FMM technique has potential as an efficient technique for assimilation of a large volume of observational data within a short time interval.



rate research

Read More

118 - Siyu Yang , Dongping Li 2021
In this paper, we develop efficient and accurate algorithms for evaluating $varphi(A)$ and $varphi(A)b$, where $A$ is an $Ntimes N$ matrix, $b$ is an $N$ dimensional vector and $varphi$ is the function defined by $varphi(x)equivsumlimits^{infty}_{k=0}frac{z^k}{(1+k)!}$. Such matrix function (the so-called $varphi$-function) plays a key role in a class of numerical methods well-known as exponential integrators. The algorithms use the scaling and modified squaring procedure combined with truncated Taylor series. The backward error analysis is presented to find the optimal value of the scaling and the degree of the Taylor approximation. Some useful techniques are employed for reducing the computational cost. Numerical comparisons with state-of-the-art algorithms show that the algorithms perform well in both accuracy and efficiency.
This paper is concerned with the recovery of (approximate) solutions to parabolic problems from incomplete and possibly inconsistent observational data, given on a time-space cylinder that is a strict subset of the computational domain under consideration. Unlike previous approaches to this and related problems our starting point is a regularized least squares formulation in a continuous infinite-dimensional setting that is based on stable variational time-space formulations of the parabolic PDE. This allows us to derive a priori as well as a posteriori error bounds for the recovered states with respect to a certain reference solution. In these bounds the regularization parameter is disentangled from the underlying discretization. An important ingredient for the derivation of a posteriori bounds is the construction of suitable Fortin operators which allow us to control oscillation errors stemming from the discretization of dual norms. Moreover, the variational framework allows us to contrive preconditioners for the discrete problems whose application can be performed in linear time, and for which the condition numbers of the preconditioned systems are uniformly proportional to that of the regularized continuous problem. In particular, we provide suitable stopping criteria for the iterative solvers based on the a posteriori error bounds. The presented numerical experiments quantify the theoretical findings and demonstrate the performance of the numerical scheme in relation with the underlying discretization and regularization.
We consider the problem of optimal recovery of an element $u$ of a Hilbert space $mathcal{H}$ from $m$ measurements obtained through known linear functionals on $mathcal{H}$. Problems of this type are well studied cite{MRW} under an assumption that $u$ belongs to a prescribed model class, e.g. a known compact subset of $mathcal{H}$. Motivated by reduced modeling for parametric partial differential equations, this paper considers another setting where the additional information about $u$ is in the form of how well $u$ can be approximated by a certain known subspace $V_n$ of $mathcal{H}$ of dimension $n$, or more generally, how well $u$ can be approximated by each $k$-dimensional subspace $V_k$ of a sequence of nested subspaces $V_0subset V_1cdotssubset V_n$. A recovery algorithm for the one-space formulation, proposed in cite{MPPY}, is proven here to be optimal and to have a simple formulation, if certain favorable bases are chosen to represent $V_n$ and the measurements. The major contribution of the present paper is to analyze the multi-space case for which it is shown that the set of all $u$ satisfying the given information can be described as the intersection of a family of known ellipsoids in $mathcal{H}$. It follows that a near optimal recovery algorithm in the multi-space problem is to identify any point in this intersection which can provide a much better accuracy than in the one-space problem. Two iterative algorithms based on alternating projections are proposed for recovery in the multi-space problem. A detailed analysis of one of them provides a posteriori performance estimates for the iterates, stopping criteria, and convergence rates. Since the limit of the algorithm is a point in the intersection of the aforementioned ellipsoids, it provides a near optimal recovery for $u$.
We study quantum algorithms that learn properties of a matrix using queries that return its action on an input vector. We show that for various problems, including computing the trace, determinant, or rank of a matrix or solving a linear system that it specifies, quantum computers do not provide an asymptotic speedup over classical computation. On the other hand, we show that for some problems, such as computing the parities of rows or columns or deciding if there are two identical rows or columns, quantum computers provide exponential speedup. We demonstrate this by showing equivalence between models that provide matrix-vector products, vector-matrix products, and vector-matrix-vector products, whereas the power of these models can vary significantly for classical computation.
We study a continuous data assimilation (CDA) algorithm for a velocity-vorticity formulation of the 2D Navier-Stokes equations in two cases: nudging applied to the velocity and vorticity, and nudging applied to the velocity only. We prove that under a typical finite element spatial discretization and backward Euler temporal discretization, application of CDA preserves the unconditional long-time stability property of the velocity-vorticity method and provides optimal long-time accuracy. These properties hold if nudging is applied only to the velocity, and if nudging is also applied to the vorticity then the optimal long-time accuracy is achieved more rapidly in time. Numerical tests illustrate the theory, and show its effectiveness on an application problem of channel flow past a flat plate.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا