No Arabic abstract
A previous study of the X-ray luminosity function of the X-ray sources in the field of the Draco dwarf spheroidal (dSph) galaxy indicated the presence of a population of unknown X-ray sources in the soft energy range of 0.5-2 keV. In 2015, Draco dSph was observed again in twenty-six deep XMM-Newton, observations providing an opportunity for a new study of the yet unclassified sources. We apply the classification criteria presented in our previous multi-wavelength study of the X-ray sources of the Draco dSph to the sources detected in the combined 2009 and 2015 XMM-Newton data set. These criteria are based on X-ray studies and properties of the optical, near-infrared, and mid-infrared counterparts and allows us to distinguish background active galactic nuclei~(AGNs) and galaxies from other types of X-ray sources. We present the classification of X-ray sources, for which the counterpart is identified as a stellar object based on our criteria from multi-wavelength data. We identify three new symbiotic stars in the Draco dSph with X-ray luminosities between $sim$3.5$times10^{34}$ erg s$^{-1}$ and 5.5$times10^{34}$ erg s$^{-1}$. The X-ray spectral analysis shows that two of the classified symbiotic stars are $beta$-type. This is the first identification of this class of symbiotic stars in a nearby galaxy. Eight sources are classified as Galactic M dwarfs in the field of the Draco dSph. The distances of these M dwarfs are between$sim$140-800 pc, their X-ray luminosities are between $10^{28}-10^{29}$ erg s$^{-1}$ and the logarithmic ratio of X-ray to bolometric luminosity, log$(frac{L_text{X}}{L_text{bol}})$, is between $-3.4$ to $-2.1$. The multiple observations allowed us to investigate flare activity of the M dwarfs. Moreover, we classified three foreground sources, located at distances of the order of $sim$1-3 kpc in the field of the Draco dSph.
We present the spectral analysis of an 87~ks emph{XMM-Newton} observation of Draco, a nearby dwarf spheroidal galaxy. Of the approximately 35 robust X-ray source detections, we focus our attention on the brightest of these sources, for which we report X-ray and multiwavelength parameters. While most of the sources exhibit properties consistent with AGN, few of them possess characteristics of LMXBs and CVs. Our analysis puts constraints on population of X-ray sources with $L_X>3times10^{33}$~erg~s$^{-1}$ in Draco suggesting that there are no actively accreting BH and NS binaries. However, we find 4 sources that could be LMXBs/CVs in quiescent state associated with Draco. We also place constraints on the central black hole luminosity and on a dark matter decay signal around 3.5~keV.
Aims. We present the first three-dimensional internal motions for individual stars in the Draco dwarf spheroidal galaxy. Methods. By combining first-epoch $Hubble$ $Space$ $Telescope$ observations and second-epoch $Gaia$ Data Release 2 positions, we measured the proper motions of $149$ sources in the direction of Draco. We determined the line-of-sight velocities for a sub-sample of $81$ red giant branch stars using medium resolution spectra acquired with the DEIMOS spectrograph at the Keck II telescope. Altogether, this resulted in a final sample of $45$ Draco members with high-precision and accurate 3D motions, which we present as a table in this paper. Results. Based on this high-quality dataset, we determined the velocity dispersions at a projected distance of $sim120$ pc from the centre of Draco to be $sigma_{R} =11.0^{+2.1}_{-1.5}$ km/s, $sigma_{T}=9.9^{+2.3}_{-3.1}$ km/s and $sigma_{LOS}=9.0^{+1.1}_{-1.1}$ km/s in the projected radial, tangential, and line-of-sight directions. This results in a velocity anisotropy $beta=0.25^{+0.47}_{-1.38}$ at $r gtrsim120$ pc. Tighter constraints may be obtained using the spherical Jeans equations and assuming constant anisotropy and Navarro-Frenk-White (NFW) mass profiles, also based on the assumption that the 3D velocity dispersion should be lower than $approx 1/3$ of the escape velocity of the system. In this case, we constrain the maximum circular velocity $V_{max}$ of Draco to be in the range of $10.2-17.0$ km/s. The corresponding mass range is in good agreement with previous estimates based on line-of-sight velocities only. Conclusions. Our Jeans modelling supports the case for a cuspy dark matter profile in this galaxy. Firmer conclusions may be drawn by applying more sophisticated models to this dataset and with new datasets from upcoming $Gaia$ releases.
This article studies the structure of the Draco dwarf spheroidal galaxy with an emphasis on the question of whether the spatial distribution of its stars has been affected by the tidal interaction with the Milky Way, using R- and V-band CCD photometry for eleven fields. The article reports coordinates for the center, a position angle of the major axis, and the ellipticity. It also reports the results of searches for asymmetries in the structure of Draco. These results, and searches for a ``break in the radial profile and for the presence of principal sequences of Draco in a color-magnitude diagram for regions more than 50 arcmin from the center, yield no evidence that tidal forces from the Milky Way have affected the structure of Draco.
We present an unprecedented, deep study of the primordial low-mass X-ray binary population in an isolated, lower-metallicity environment. We perform followup observations of previously-identified X-ray binary candidates in the Sculptor Dwarf Galaxy by combining a second Chandra observation with Spitzer and Gemini photometry, as well as Gemini spectroscopy of selected targets. Of the original nine bright X-ray sources identified, we are able to classify all but one as quasars, active galactic nuclei, or background galaxies. We further discover four new X-ray sources in the second-epoch Chandra observation. Three of these new sources are background sources and one is a foreground flaring star. We have found that Sculptor is effectively devoid of X-ray sources above a few 1e34 erg/s. If Sculptor is able to retain primordial binaries at a similar rate to globular clusters, this implies that bright X-ray binaries observed in globular clusters in the present epoch are all formed dynamically.
We present the results of the analysis of three XMM-Newton observations of the Willman 1 dwarf spheroidal galaxy (Wil 1). X-ray sources are classified on the basis of spectral analysis, hardness ratios, X-ray-to-optical flux ratio, X-ray variability, plus cross-correlation with available catalogues in optical and infrared wavelengths. We catalogued 97 sources in the field of Wil 1. Our classification shows the presence of a $beta$-type symbiotic star in Wil 1. We classified one M dwarf foreground star in the field of Wil 1. Moreover, fifty-four sources are classified as background AGNs and galaxies. Our study shows that the luminosity of the X-ray sources of Wil 1 does not exceed $sim$10$^{34}$ erg s$^{-1}$ in the energy range of 0.2--12.0 keV, which is similar to observed luminosities of sources in nearby dwarf spheroidal galaxies.