Do you want to publish a course? Click here

Non-linear additive twist of Fourier coefficients of $GL(3)$ Maass forms

70   0   0.0 ( 0 )
 Added by Sumit Kumar
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

Let $lambda_{pi}(1,n)$ be the Fourier coefficients of the Hecke-Maass cusp form $pi$ for $SL(3,mathbb{Z})$. The aim of this article is to get a non trivial bound on the sum which is non-linear additive twist of the coefficients $lambda_{pi}(1,n)$. More precisely, for any $0 < beta < 1$ we have $$sum_{n=1}^{infty} lambda_{pi}(1,n) , eleft(alpha n^{beta}right) Vleft(frac{n}{X}right) ll_{pi, alpha,epsilon} X^{frac{3 }{4}+frac{3 beta}{10} + epsilon}$$ for any $epsilon>0$. Here $V(x)$ is a smooth function supported in $[1,2]$ and satisfies $V^{(j)}(x) ll_{j} 1$.



rate research

Read More

We study the question of Eulerianity (factorizability) for Fourier coefficients of automorphic forms, and we prove a general transfer theorem that allows one to deduce the Eulerianity of certain coefficients from that of another coefficient. We also establish a `hidden invariance property of Fourier coefficients. We apply these results to minimal and next-to-minimal automorphic representations, and deduce Eulerianity for a large class of Fourier and Fourier-Jacobi coefficients. In particular, we prove Eulerianity for parabolic Fourier coefficients with characters of maximal rank for a class of Eisenstein series in minimal and next-to-minimal representations of groups of ADE-type that are of interest in string theory.
We consider a general class of Fourier coefficients for an automorphic form on a finite cover of a reductive adelic group ${bf G}(mathbb{A}_{mathbb{K}})$, associated to the data of a `Whittaker pair. We describe a quasi-order on Fourier coefficients, and an algorithm that gives an explicit formula for any coefficient in terms of integrals and sums involving higher coefficients. The maximal elements for the quasi-order are `Levi-distinguished Fourier coefficients, which correspond to taking the constant term along the unipotent radical of a parabolic subgroup, and then further taking a Fourier coefficient with respect to a $mathbb{K}$-distinguished nilpotent orbit in the Levi quotient. Thus one can express any Fourier coefficient, including the form itself, in terms of higher Levi-distinguished coefficients. In follow-up papers we use this result to determine explicit Fourier expansions of minimal and next-to-minimal automorphic forms on split simply-laced reductive groups, and to obtain Euler product decompositions of their top Fourier coefficients.
301 - Robert C. Rhoades 2011
We discuss the problem of the vanishing of Poincare series. This problem is known to be related to the existence of weakly holomorphic forms with prescribed principal part. The obstruction to the existence is related to the pseudomodularity of Ramanujans mock theta functions. We embed the space of weakly holomorphic modular forms into the larger space of harmonic weak Maass forms. From this perspective we discuss the linear relations between Poincare series and the connection to Ramanujans mock theta functions.
Let $f$ be a weight $k$ holomorphic cusp form of level one, and let $S_f(n)$ denote the sum of the first $n$ Fourier coefficients of $f$. In analogy with Dirichlets divisor problem, it is conjectured that $S_f(X) ll X^{frac{k-1}{2} + frac{1}{4} + epsilon}$. Understanding and bounding $S_f(X)$ has been a very active area of research. The current best bound for individual $S_f(X)$ is $S_f(X) ll X^{frac{k-1}{2} + frac{1}{3}} (log X)^{-0.1185}$ from Wu. Chandrasekharan and Narasimhan showed that the Classical Conjecture for $S_f(X)$ holds on average over intervals of length $X$. Jutila improved this result to show that the Classical Conjecture for $S_f(X)$ holds on average over short intervals of length $X^{frac{3}{4} + epsilon}$. Building on the results and analytic information about $sum lvert S_f(n) rvert^2 n^{-(s + k - 1)}$ from our recent work, we further improve these results to show that the Classical Conjecture for $S_f(X)$ holds on average over short intervals of length $X^{frac{2}{3}}(log X)^{frac{1}{6}}$.
We study simultaneous non-vanishing of $L(tfrac{1}{2},di)$ and $L(tfrac{1}{2},gotimes di)$, when $di$ runs over an orthogonal basis of the space of Hecke-Maass cusp forms for $SL(3,mathbb{Z})$ and $g$ is a fixed $SL(2,mathbb{Z})$ Hecke cusp form of weight $kequiv 0 pmod 4$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا