No Arabic abstract
We consider a general class of Fourier coefficients for an automorphic form on a finite cover of a reductive adelic group ${bf G}(mathbb{A}_{mathbb{K}})$, associated to the data of a `Whittaker pair. We describe a quasi-order on Fourier coefficients, and an algorithm that gives an explicit formula for any coefficient in terms of integrals and sums involving higher coefficients. The maximal elements for the quasi-order are `Levi-distinguished Fourier coefficients, which correspond to taking the constant term along the unipotent radical of a parabolic subgroup, and then further taking a Fourier coefficient with respect to a $mathbb{K}$-distinguished nilpotent orbit in the Levi quotient. Thus one can express any Fourier coefficient, including the form itself, in terms of higher Levi-distinguished coefficients. In follow-up papers we use this result to determine explicit Fourier expansions of minimal and next-to-minimal automorphic forms on split simply-laced reductive groups, and to obtain Euler product decompositions of their top Fourier coefficients.
We study the question of Eulerianity (factorizability) for Fourier coefficients of automorphic forms, and we prove a general transfer theorem that allows one to deduce the Eulerianity of certain coefficients from that of another coefficient. We also establish a `hidden invariance property of Fourier coefficients. We apply these results to minimal and next-to-minimal automorphic representations, and deduce Eulerianity for a large class of Fourier and Fourier-Jacobi coefficients. In particular, we prove Eulerianity for parabolic Fourier coefficients with characters of maximal rank for a class of Eisenstein series in minimal and next-to-minimal representations of groups of ADE-type that are of interest in string theory.
In this paper we analyze Fourier coefficients of automorphic forms on a finite cover $G$ of an adelic split simply-laced group. Let $pi$ be a minimal or next-to-minimal automorphic representation of $G$. We prove that any $etain pi$ is completely determined by its Whittaker coefficients with respect to (possibly degenerate) characters of the unipotent radical of a fixed Borel subgroup, analogously to the Piatetski-Shapiro--Shalika formula for cusp forms on $GL_n$. We also derive explicit formulas expressing the form, as well as all its maximal parabolic Fourier coefficient in terms of these Whittaker coefficients. A consequence of our results is the non-existence of cusp forms in the minimal and next-to-minimal automorphic spectrum. We provide detailed examples for $G$ of type $D_5$ and $E_8$ with a view towards applications to scattering amplitudes in string theory.
In this paper, we study top Fourier coefficients of certain automorphic representations of $mathrm{GL}_n(mathbb{A})$. In particular, we prove a conjecture of Jiang on top Fourier coefficients of isobaric automorphic representations of $mathrm{GL}_n(mathbb{A})$ of form $$ Delta(tau_1, b_1) boxplus Delta(tau_2, b_2) boxplus cdots boxplus Delta(tau_r, b_r),, $$ where $Delta(tau_i,b_i)$s are Speh representations in the discrete spectrum of $mathrm{GL}_{a_ib_i}(mathbb{A})$ with $tau_i$s being unitary cuspidal representations of $mathrm{GL}_{a_i}(mathbb{A})$, and $n = sum_{i=1}^r a_ib_i$. Endoscopic lifting images of the discrete spectrum of classical groups form a special class of such representations. The result of this paper will facilitate the study of automorphic forms of classical groups occurring in the discrete spectrum.
Let F be a global field and A its ring of adeles. Let G:=SL(2). We study the bilinear form B on the space of K-finite smooth compactly supported functions on G(A )/G(F) defined by the formula B (f,g):=B(f,g)-(M^{-1}CT (f),CT (g)), where B is the usual scalar product, CT is the constant term operator, and M is the standard intertwiner. This form is natural from the viewpoint of the geometric Langlands program. To justify this claim, we provide a dictionary between the classical and geometric theory of automorphic forms. We also show that the form B is related to S. Schieders Picard-Lefschetz oscillators.
We provide an introduction to the theory of Eisenstein series and automorphic forms on real simple Lie groups G, emphasising the role of representation theory. It is useful to take a slightly wider view and define all objects over the (rational) adeles A, thereby also paving the way for connections to number theory, representation theory and the Langlands program. Most of the results we present are already scattered throughout the mathematics literature but our exposition collects them together and is driven by examples. Many interesting aspects of these functions are hidden in their Fourier coefficients with respect to unipotent subgroups and a large part of our focus is to explain and derive general theorems on these Fourier expansions. Specifically, we give complete proofs of the Langlands constant term formula for Eisenstein series on adelic groups G(A) as well as the Casselman--Shalika formula for the p-adic spherical Whittaker function associated to unramified automorphic representations of G(Q_p). In addition, we explain how the classical theory of Hecke operators fits into the modern theory of automorphic representations of adelic groups, thereby providing a connection with some key elements in the Langlands program, such as the Langlands dual group LG and automorphic L-functions. Somewhat surprisingly, all these results have natural interpretations as encoding physical effects in string theory. We therefore also introduce some basic concepts of string theory, aimed toward mathematicians, emphasising the role of automorphic forms. In particular, we provide a detailed treatment of supersymmetry constraints on string amplitudes which enforce differential equations of the same type that are satisfied by automorphic forms. Our treatise concludes with a detailed list of interesting open questions and pointers to additional topics which go beyond the scope of this book.