Do you want to publish a course? Click here

Learning Representations by Humans, for Humans

312   0   0.0 ( 0 )
 Added by Sophie Hilgard
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

When machine predictors can achieve higher performance than the human decision-makers they support, improving the performance of human decision-makers is often conflated with improving machine accuracy. Here we propose a framework to directly support human decision-making, in which the role of machines is to reframe problems rather than to prescribe actions through prediction. Inspired by the success of representation learning in improving performance of machine predictors, our framework learns human-facing representations optimized for human performance. This Mind Composed with Machine framework incorporates a human decision-making model directly into the representation learning paradigm and is trained with a novel human-in-the-loop training procedure. We empirically demonstrate the successful application of the framework to various tasks and representational forms.

rate research

Read More

Humans, as the most powerful learners on the planet, have accumulated a lot of learning skills, such as learning through tests, interleaving learning, self-explanation, active recalling, to name a few. These learning skills and methodologies enable humans to learn new topics more effectively and efficiently. We are interested in investigating whether humans learning skills can be borrowed to help machines to learn better. Specifically, we aim to formalize these skills and leverage them to train better machine learning (ML) models. To achieve this goal, we develop a general framework -- Skillearn, which provides a principled way to represent humans learning skills mathematically and use the formally-represented skills to improve the training of ML models. In two case studies, we apply Skillearn to formalize two learning skills of humans: learning by passing tests and interleaving learning, and use the formalized skills to improve neural architecture search. Experiments on various datasets show that trained using the skills formalized by Skillearn, ML models achieve significantly better performance.
Humans can naturally learn to execute a new task by seeing it performed by other individuals once, and then reproduce it in a variety of configurations. Endowing robots with this ability of imitating humans from third person is a very immediate and natural way of teaching new tasks. Only recently, through meta-learning, there have been successful attempts to one-shot imitation learning from humans; however, these approaches require a lot of human resources to collect the data in the real world to train the robot. But is there a way to remove the need for real world human demonstrations during training? We show that with Task-Embedded Control Networks, we can infer control polices by embedding human demonstrations that can condition a control policy and achieve one-shot imitation learning. Importantly, we do not use a real human arm to supply demonstrations during training, but instead leverage domain randomisation in an application that has not been seen before: sim-to-real transfer on humans. Upon evaluating our approach on pushing and placing tasks in both simulation and in the real world, we show that in comparison to a system that was trained on real-world data we are able to achieve similar results by utilising only simulation data.
Acquiring multiple skills has commonly involved collecting a large number of expert demonstrations per task or engineering custom reward functions. Recently it has been shown that it is possible to acquire a diverse set of skills by self-supervising control on top of human teleoperated play data. Play is rich in state space coverage and a policy trained on this data can generalize to specific tasks at test time outperforming policies trained on individual expert task demonstrations. In this work, we explore the question of whether robots can learn to play to autonomously generate play data that can ultimately enhance performance. By training a behavioral cloning policy on a relatively small quantity of human play, we autonomously generate a large quantity of cloned play data that can be used as additional training. We demonstrate that a general purpose goal-conditioned policy trained on this augmented dataset substantially outperforms one trained only with the original human data on 18 difficult user-specified manipulation tasks in a simulated robotic tabletop environment. A video example of a robot imitating human play can be seen here: https://learning-to-play.github.io/videos/undirected_play1.mp4
Recently, data-driven single-view reconstruction methods have shown great progress in modeling 3D dressed humans. However, such methods suffer heavily from depth ambiguities and occlusions inherent to single view inputs. In this paper, we address such issues by lifting the single-view input with additional views and investigate the best strategy to suitably exploit information from multiple views. We propose an end-to-end approach that learns an implicit 3D representation of dressed humans from sparse camera views. Specifically, we introduce two key components: first an attention-based fusion layer that learns to aggregate visual information from several viewpoints; second a mechanism that encodes local 3D patterns under the multi-view context. In the experiments, we show the proposed approach outperforms the state of the art on standard data both quantitatively and qualitatively. Additionally, we apply our method on real data acquired with a multi-camera platform and demonstrate our approach can obtain results comparable to multi-view stereo with dramatically less views.
While we would like agents that can coordinate with humans, current algorithms such as self-play and population-based training create agents that can coordinate with themselves. Agents that assume their partner to be optimal or similar to them can converge to coordination protocols that fail to understand and be understood by humans. To demonstrate this, we introduce a simple environment that requires challenging coordination, based on the popular game Overcooked, and learn a simple model that mimics human play. We evaluate the performance of agents trained via self-play and population-based training. These agents perform very well when paired with themselves, but when paired with our human model, they are significantly worse than agents designed to play with the human model. An experiment with a planning algorithm yields the same conclusion, though only when the human-aware planner is given the exact human model that it is playing with. A user study with real humans shows this pattern as well, though less strongly. Qualitatively, we find that the gains come from having the agent adapt to the humans gameplay. Given this result, we suggest several approaches for designing agents that learn about humans in order to better coordinate with them. Code is available at https://github.com/HumanCompatibleAI/overcooked_ai.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا