Do you want to publish a course? Click here

Reallocating Multiple Facilities on the Line

62   0   0.0 ( 0 )
 Added by Philip Lazos
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

We study the multistage $K$-facility reallocation problem on the real line, where we maintain $K$ facility locations over $T$ stages, based on the stage-dependent locations of $n$ agents. Each agent is connected to the nearest facility at each stage, and the facilities may move from one stage to another, to accommodate different agent locations. The objective is to minimize the connection cost of the agents plus the total moving cost of the facilities, over all stages. $K$-facility reallocation was introduced by de Keijzer and Wojtczak, where they mostly focused on the special case of a single facility. Using an LP-based approach, we present a polynomial time algorithm that computes the optimal solution for any number of facilities. We also consider online $K$-facility reallocation, where the algorithm becomes aware of agent locations in a stage-by-stage fashion. By exploiting an interesting connection to the classical $K$-server problem, we present a constant-competitive algorithm for $K = 2$ facilities.



rate research

Read More

In this paper, we study the two-facility location game on a line with optional preference where the acceptable set of facilities for each agent could be different and an agents cost is his distance to the closest facility within his acceptable set. The objective is to minimize the total cost of all agents while achieving strategyproofness. We design a deterministic strategyproof mechanism for the problem with approximation ratio of 2.75, improving upon the earlier best ratio of n/2+1.
In this paper we consider several facility location problems with applications to cost and social welfare optimization, when the area map is encoded as a binary (0,1) mxn matrix. We present algorithmic solutions for all the problems. Some cases are too particular to be used in practical situations, but they are at least a starting point for more generic solutions.
The Chamberlin-Courant and Monroe rules are fundamental and well-studied rules in the literature of multi-winner elections. The problem of determining if there exists a committee of size k that has a Chamberlin-Courant (respectively, Monroe) score of at most r is known to be NP-complete. We consider the following natural problems in this setting: a) given a committee S of size k as input, is it an optimal k-sized committee, and b) given a candidate c and a committee size k, does there exist an optimal k-sized committee that contains c? In this work, we resolve the complexity of both problems for the Chamberlin-Courant and Monroe voting rules in the settings of rankings as well as approval ballots. We show that verifying if a given committee is optimal is coNP-complete whilst the latter problem is complete for $Theta_{2}^{P}$. We also demonstrate efficient algorithms for the second problem when the input consists of single-peaked rankings. Our contribution fills an essential gap in the literature for these important multi-winner rules.
We study dynamic matching in an infinite-horizon stochastic market. While all agents are potentially compatible with each other, some are hard-to-match and others are easy-to-match. Agents prefer to be matched as soon as possible and matches are formed either bilaterally or indirectly through chains. We adopt an asymptotic approach and compute tight bounds on the limit of waiting time of agents under myopic policies that differ in matching technology and prioritization. We find that the market composition is a key factor in the desired matching technology and prioritization level. When hard-to-match agents arrive less frequently than easy-to-match ones (i) bilateral matching is almost as efficient as chains (waiting times scale similarly under both, though chains always outperform bilateral matching by a constant factor), and (ii) assigning priorities to hard-to-match agents improves their waiting times. When hard-to-match agents arrive more frequently, chains are much more efficient than bilateral matching and prioritization has no impact. We further conduct comparative statics on arrival rates. Somewhat surprisingly, we find that in a heterogeneous market and under bilateral matching, increasing arrival rate has a non-monotone effect on waiting times, due to the fact that, under some market compositions, there is an adverse effect of competition. Our comparative statics shed light on the impact of merging markets and attracting altruistic agents (that initiate chains) or easy-to-match agents. This work uncovers fundamental differences between heterogeneous and homogeneous dynamic markets, and potentially helps policy makers to generate insights on the operations of matching markets such as kidney exchange programs.
Consider an online facility assignment problem where a set of facilities $F = { f_1, f_2, f_3, cdots, f_{|F|} }$ of equal capacity $l$ is situated on a metric space and customers arrive one by one in an online manner on that space. We assign a customer $c_i$ to a facility $f_j$ before a new customer $c_{i+1}$ arrives. The cost of this assignment is the distance between $c_i$ and $f_j$. The objective of this problem is to minimize the sum of all assignment costs. Recently Ahmed et al. (TCS, 806, pp. 455-467, 2020) studied the problem where the facilities are situated on a line and computed competitive ratio of Algorithm Greedy which assigns the customer to the nearest available facility. They computed competitive ratio of algorithm named Algorithm Optimal-Fill which assigns the new customer considering optimal assignment of all previous customers. They also studied the problem where the facilities are situated on a connected unweighted graph. In this paper we first consider that $F$ is situated on the vertices of a connected unweighted grid graph $G$ of size $r times c$ and customers arrive one by one having positions on the vertices of $G$. We show that Algorithm Greedy has competitive ratio $r times c + r + c$ and Algorithm Optimal-Fill has competitive ratio $O(r times c)$. We later show that the competitive ratio of Algorithm Optimal-Fill is $2|F|$ for any arbitrary graph. Our bound is tight and better than the previous result. We also consider the facilities are distributed arbitrarily on a plane and provide an algorithm for the scenario. We also provide an algorithm that has competitive ratio $(2n-1)$. Finally, we consider a straight line metric space and show that no algorithm for the online facility assignment problem has competitive ratio less than $9.001$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا