Do you want to publish a course? Click here

Broadband enhancement of the magneto-optical activity of hybrid Au loaded Bi:YIG

142   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We unravel the underlying near-field mechanism of the enhancement of the magneto-optical activity of bismuth-substituted yttrium iron garnet films (Bi:YIG) loaded with gold nanoparticles. The experimental results show that the embedded gold nanoparticles lead to a broadband enhancement of the magneto-optical activity with respect to the activity of the bare Bi:YIG films. Full vectorial near- and far-field simulations demonstrate that this broadband enhancement is the result of a magneto-optically enabled cross-talking of orthogonal localized plasmon resonances. Our results pave the way to the on-demand design of the magneto-optical properties of hybrid magneto-plasmonic circuitry.

rate research

Read More

Antiferromagnets are promising for magneto-optical light control that could be performed at THz frequencies via excitation of the quasi-antiferromagnetic spin modes. However, most of the antiferromagnetic crystals possess optical anisotropy that is usually treated as an unfavorable condition for the magneto-optical measurements: optical anisotropy is known to diminish the Faraday rotation with respect to the case of the isotropic medium. Here we show that the situation could be quite opposite: a phenomenon of birefringence mediated enhancement of the magneto-optical activity appears if orientation of the incident light linear polarization is chosen properly. The present study relies on the experimental, analytical and numerical studies of iron borate FeBO$_3$ crystals. We demonstrate a significant increase of the magneto-optical activity by more than 10 times for 70$^circ$ angle between light polarization and incidence plane instead of commonly-used p- or s-polarizations. It provides a unique sensitivity to the in-plane magnetization of FeBO$_3$ that is crucial for the pump-probe studies, magneto-optical microscopy and other. The most important practical application of the observed phenomenon is the light modulation with up to 100$%$ efficiency at THz frequencies. The approach is applicable to other types of the birefringent crystals with the magneto-optical response.
We present a detailed quantitative magneto-optical imaging study of several superconductor/ferromagnet hybrid structures, including Nb deposited on top of thermomagnetically patterned NdFeB, and permalloy/niobium with erasable and tailored magnetic landscapes imprinted in the permalloy layer. The magneto-optical imaging data is complemented with and compared to scanning Hall probe microscopy measurements. Comprehensive protocols have been developed for calibrating, testing, and converting Faraday rotation data to magnetic field maps. Applied to the acquired data, they reveal the comparatively weaker magnetic response of the superconductor from the background of larger fields and field gradients generated by the magnetic layer.
Integrated optical devices able to control light matter interactions on the nanoscale have attracted the attention of the scientific community in recent years. However, most of these devices are based on silicon waveguides, limiting their use for telecommunication wavelengths. In this contribution, we propose an integrated device that operates with light in the visible spectrum. The proposed device is a hybrid structure consisting of a high-refractive-index layer placed on top of an ion-exchanged glass waveguide. We demonstrate that this hybrid structure serves as an efficient light coupler for the excitation of nanoemitters. The numerical and experimental results show that the device can enhance the electromagnetic field confinement up to 11 times, allowing a higher photoluminescence signal from nanocrystals placed on its surface. The designed device opens new perspectives in the generation of new optical devices suitable for quantum information or for optical sensing.
Photonic data routing in optical networks overcomes the limitations of electronic routers with respect to data rate, latency, and energy consumption while suffering from dynamic power consumption, non-simultaneous usage of multiple wavelength channels, and large footprints. Here we show the first hybrid photonic-plasmonic, non-blocking, broadband 5x5 router. The compact footprint (<250 {mu}m2) enables high operation speed (480 GHz) requiring only 82 fJ/bit (1.9 dB) of averaged energy consumption (routing loss). The router supports multi-wavelength up to 206 nm in the telecom band. Having a data-capacity of >70 Tbps, thus demonstrating key features required by future high data-throughput optical networks.
The harvesting of ambient radio-frequency (RF) energy is an attractive and clean way to realize the idea of self-powered electronics. Here we present a design for a microwave energy harvester based on a nanoscale spintronic diode (NSD). This diode contains a magnetic tunnel junction with a canted magnetization of the free layer, and can convert RF energy over the frequency range from 100 MHz to 1.2 GHz into DC electric voltage. An attractive property of the developed NSD is the generation of an almost constant DC voltage in a wide range of frequencies of the external RF signals. We further show that the developed NSD provides sufficient DC voltage to power a low-power nanodevice - a black phosphorus photo-sensor. Our results demonstrate that the developed NSD could pave the way for using spintronic detectors as building blocks for self-powered nano-systems, such as implantable biomedical devices, wireless sensors, and portable electronics.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا