Do you want to publish a course? Click here

Sparse Estimation of Historical Functional Linear Models with a Nested Group Bridge Approach

292   0   0.0 ( 0 )
 Added by Xiaolei Xun
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

The conventional historical functional linear model relates the current value of the functional response at time t to all past values of the functional covariate up to time t. Motivated by situations where it is more reasonable to assume that only recent, instead of all, past values of the functional covariate have an impact on the functional response, we investigate in this work the historical functional linear model with an unknown forward time lag into the history. Besides the common goal of estimating the bivariate regression coefficient function, we also aim to identify the historical time lag from the data, which is important in many applications. Tailored for this purpose, we propose an estimation procedure adopting the finite element method to conform naturally to the trapezoidal domain of the bivariate coefficient function. A nested group bridge penalty is developed to provide simultaneous estimation of the bivariate coefficient function and the historical lag. The method is demonstrated in a real data example investigating the effect of muscle activation recorded via the noninvasive electromyography (EMG) method on lip acceleration during speech production. The finite sample performance of our proposed method is examined via simulation studies in comparison with the conventional method.



rate research

Read More

We study a scalar-on-function historical linear regression model which assumes that the functional predictor does not influence the response when the time passes a certain cutoff point. We approach this problem from the perspective of locally sparse modeling, where a function is locally sparse if it is zero on a substantial portion of its defining domain. In the historical linear model, the slope function is exactly a locally sparse function that is zero beyond the cutoff time. A locally sparse estimate then gives rise to an estimate of the cutoff time. We propose a nested group bridge penalty that is able to specifically shrink the tail of a function. Combined with the B-spline basis expansion and penalized least squares, the nested group bridge approach can identify the cutoff time and produce a smooth estimate of the slope function simultaneously. The proposed locally sparse estimator is shown to be consistent, while its numerical performance is illustrated by simulation studies. The proposed method is demonstrated with an application of determining the effect of the past engine acceleration on the current particulate matter emission.
Historical Functional Linear Models (HFLM) quantify associations between a functional predictor and functional outcome where the predictor is an exposure variable that occurs before, or at least concurrently with, the outcome. Current work on the HFLM is largely limited to frequentist estimation techniques that employ spline-based basis representations. In this work, we propose a novel use of the discrete wavelet-packet transformation, which has not previously been used in functional models, to estimate historical relationships in a fully Bayesian model. Since inference has not been an emphasis of the existing work on HFLMs, we also employ two established Bayesian inference procedures in this historical functional setting. We investigate the operating characteristics of our wavelet-packet HFLM, as well as the two inference procedures, in simulation and use the model to analyze data on the impact of lagged exposure to particulate matter finer than 2.5$mu$g on heart rate variability in a cohort of journeyman boilermakers over the course of a days shift.
102 - Yinan Lin , Zhenhua Lin 2021
We develop a unified approach to hypothesis testing for various types of widely used functional linear models, such as scalar-on-function, function-on-function and function-on-scalar models. In addition, the proposed test applies to models of mixed types, such as models with both functional and scalar predictors. In contrast with most existing methods that rest on the large-sample distributions of test statistics, the proposed method leverages the technique of bootstrapping max statistics and exploits the variance decay property that is an inherent feature of functional data, to improve the empirical power of tests especially when the sample size is limited and the signal is relatively weak. Theoretical guarantees on the validity and consistency of the proposed test are provided uniformly for a class of test statistics.
This paper is concerned with model averaging estimation for partially linear functional score models. These models predict a scalar response using both parametric effect of scalar predictors and non-parametric effect of a functional predictor. Within this context, we develop a Mallows-type criterion for choosing weights. The resulting model averaging estimator is proved to be asymptotically optimal under certain regularity conditions in terms of achieving the smallest possible squared error loss. Simulation studies demonstrate its superiority or comparability to information criterion score-based model selection and averaging estimators. The proposed procedure is also applied to two real data sets for illustration. That the components of nonparametric part are unobservable leads to a more complicated situation than ordinary partially linear models (PLM) and a different theoretical derivation from those of PLM.
291 - Yunbo Ouyang , Feng Liang 2017
A nonparametric Bayes approach is proposed for the problem of estimating a sparse sequence based on Gaussian random variables. We adopt the popular two-group prior with one component being a point mass at zero, and the other component being a mixture of Gaussian distributions. Although the Gaussian family has been shown to be suboptimal for this problem, we find that Gaussian mixtures, with a proper choice on the means and mixing weights, have the desired asymptotic behavior, e.g., the corresponding posterior concentrates on balls with the desired minimax rate. To achieve computation efficiency, we propose to obtain the posterior distribution using a deterministic variational algorithm. Empirical studies on several benchmark data sets demonstrate the superior performance of the proposed algorithm compared to other alternatives.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا