Do you want to publish a course? Click here

A Self-Attention Joint Model for Spoken Language Understanding in Situational Dialog Applications

92   0   0.0 ( 0 )
 Added by Jin Zeng
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Spoken language understanding (SLU) acts as a critical component in goal-oriented dialog systems. It typically involves identifying the speakers intent and extracting semantic slots from user utterances, which are known as intent detection (ID) and slot filling (SF). SLU problem has been intensively investigated in recent years. However, these methods just constrain SF results grammatically, solve ID and SF independently, or do not fully utilize the mutual impact of the two tasks. This paper proposes a multi-head self-attention joint model with a conditional random field (CRF) layer and a prior mask. The experiments show the effectiveness of our model, as compared with state-of-the-art models. Meanwhile, online education in China has made great progress in the last few years. But there are few intelligent educational dialog applications for students to learn foreign languages. Hence, we design an intelligent dialog robot equipped with different scenario settings to help students learn communication skills.



rate research

Read More

Spoken Language Understanding (SLU), a core component of the task-oriented dialogue system, expects a shorter inference latency due to the impatience of humans. Non-autoregressive SLU models clearly increase the inference speed but suffer uncoordinated-slot problems caused by the lack of sequential dependency information among each slot chunk. To gap this shortcoming, in this paper, we propose a novel non-autoregressive SLU model named Layered-Refine Transformer, which contains a Slot Label Generation (SLG) task and a Layered Refine Mechanism (LRM). SLG is defined as generating the next slot label with the token sequence and generated slot labels. With SLG, the non-autoregressive model can efficiently obtain dependency information during training and spend no extra time in inference. LRM predicts the preliminary SLU results from Transformers middle states and utilizes them to guide the final prediction. Experiments on two public datasets indicate that our model significantly improves SLU performance (1.5% on Overall accuracy) while substantially speed up (more than 10 times) the inference process over the state-of-the-art baseline.
This paper presents the design of the machine learning architecture that underlies the Alexa Skills Kit (ASK) a large scale Spoken Language Understanding (SLU) Software Development Kit (SDK) that enables developers to extend the capabilities of Amazons virtual assistant, Alexa. At Amazon, the infrastructure powers over 25,000 skills deployed through the ASK, as well as AWSs Amazon Lex SLU Service. The ASK emphasizes flexibility, predictability and a rapid iteration cycle for third party developers. It imposes inductive biases that allow it to learn robust SLU models from extremely small and sparse datasets and, in doing so, removes significant barriers to entry for software developers and dialogue systems researchers.
Natural language understanding (NLU) and natural language generation (NLG) are two fundamental and related tasks in building task-oriented dialogue systems with opposite objectives: NLU tackles the transformation from natural language to formal representations, whereas NLG does the reverse. A key to success in either task is parallel training data which is expensive to obtain at a large scale. In this work, we propose a generative model which couples NLU and NLG through a shared latent variable. This approach allows us to explore both spaces of natural language and formal representations, and facilitates information sharing through the latent space to eventually benefit NLU and NLG. Our model achieves state-of-the-art performance on two dialogue datasets with both flat and tree-structured formal representations. We also show that the model can be trained in a semi-supervised fashion by utilising unlabelled data to boost its performance.
Data scarcity is one of the main obstacles of domain adaptation in spoken language understanding (SLU) due to the high cost of creating manually tagged SLU datasets. Recent works in neural text generative models, particularly latent variable models such as variational autoencoder (VAE), have shown promising results in regards to generating plausible and natural sentences. In this paper, we propose a novel generative architecture which leverages the generative power of latent variable models to jointly synthesize fully annotated utterances. Our experiments show that existing SLU models trained on the additional synthetic examples achieve performance gains. Our approach not only helps alleviate the data scarcity issue in the SLU task for many datasets but also indiscriminately improves language understanding performances for various SLU models, supported by extensive experiments and rigorous statistical testing.
Much recent work on Spoken Language Understanding (SLU) is limited in at least one of three ways: models were trained on oracle text input and neglected ASR errors, models were trained to predict only intents without the slot values, or models were trained on a large amount of in-house data. In this paper, we propose a clean and general framework to learn semantics directly from speech with semi-supervision from transcribed or untranscribed speech to address these issues. Our framework is built upon pretrained end-to-end (E2E) ASR and self-supervised language models, such as BERT, and fine-tuned on a limited amount of target SLU data. We study two semi-supervised settings for the ASR component: supervised pretraining on transcribed speech, and unsupervised pretraining by replacing the ASR encoder with self-supervised speech representations, such as wav2vec. In parallel, we identify two essential criteria for evaluating SLU models: environmental noise-robustness and E2E semantics evaluation. Experiments on ATIS show that our SLU framework with speech as input can perform on par with those using oracle text as input in semantics understanding, even though environmental noise is present and a limited amount of labeled semantics data is available for training.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا