No Arabic abstract
Most bulge-dominated galaxies host black holes with masses that tightly correlate with the masses of their bulges. This may indicate that the black holes may regulate galaxy growth or vice versa, or that they may grow in lock-step. The quest to understand how, when, and where those black-holes formed motivates much of extragalactic astronomy. Here we focus on a population of galaxies with active black holes in their nuclei (active galactic nuclei or AGN), that are fully or partially hidden by dust and gas: the emission from the broad line region is either completely or partially obscured with a visual extinction of 1 or above. This limit, though not yet precise, appears to be the point at which the populations of AGN may evolve differently. We highlight the importance of finding and studying those dusty AGN at redshifts between 1 and 3, the epoch when the universe may have gone through its most dramatic changes. We emphasize the need for future large multiplexed spectroscopic instruments that can perform dedicated surveys in the optical and NIR to pin down the demographics of such objects and study their reddening properties, star-formation histories, and excitation conditions. These key studies will shed light on the role of black holes in galaxy evolution during the epoch of peak growth activity.
Quasar-driven outflows must have made their most significant impact on galaxy formation during the epoch when massive galaxies were forming most rapidly. To study the impact of quasar feedback we conducted rest-frame optical integral field spectrograph (IFS) observations of three extremely red quasars (ERQs) and one type-2 quasar at $z=2-3$, obtained with the NIFS and OSIRIS instruments at the Gemini North and W. M. Keck Observatory with the assistance of laser-guided adaptive optics. We use the kinematics and morphologies of the [OIII] 5007AA and H$alpha$ 6563AA emission lines redshifted into the near-infrared to gauge the extents, kinetic energies and momentum fluxes of the ionized outflows in the quasars host galaxies. For the ERQs, the galactic-scale outflows are likely driven by radiation pressure in a high column density environment or due to an adiabatic shock. For the type-2 quasar, the outflow is driven by radiation pressure in a low column density environment or due to a radiative shock. The outflows in the ERQs carry a significant amount of energy ranging from 0.05-5$%$ of the quasars bolometric luminosity, powerful enough to have a significant impact on the quasar host galaxies. However, the outflows are likely only impacting the inner few kpc of each host galaxy. The observed outflow sizes are generally smaller than other ionized outflows observed at high redshift. The high ratio between the momentum flux of the ionized outflow and the photon momentum flux from the quasar accretion disk and high nuclear obscuration makes these ERQs great candidates for transitional objects where the outflows are likely responsible for clearing material in the inner regions of each galaxy, unveiling the quasar accretion disk at optical wavelengths.
We present Hubble Space Telescope 1.4-1.6 micron images of the hosts of ten extremely red quasars (ERQs) and six type 2 quasar candidates at z=2-3. ERQs, whose bolometric luminosities range between 10^47 and 10^48 erg/sec, show spectroscopic signs of powerful ionized winds, whereas type 2 quasar candidates are less luminous and show only mild outflows. After performing careful subtraction of the quasar light, we clearly detect almost all host galaxies. The median rest-frame B-band luminosity of the ERQ hosts in our sample is 10^11.2 L_Sun, or 4 L* at this redshift. Two of the ten hosts of ERQs are in ongoing mergers. The hosts of the type 2 quasar candidates are 0.6 dex less luminous, with 2/6 in likely ongoing mergers. Intriguingly, despite some signs of interaction and presence of low-mass companions, our objects do not show nearly as much major merger activity as do high-redshift radio-loud galaxies and quasars. In the absence of an overt connection to major ongoing gas-rich merger activity, our observations are consistent with a model in which the near-Eddington accretion and strong feedback of ERQs are associated with relatively late stages of mergers resulting in early-type remnants. These results are in some tension with theoretical expectations of galaxy formation models, in which rapid black hole growth occurs within a short time of a major merger. Type 2 quasar candidates are less luminous, so they may instead be powered by internal galactic processes.
We present Simulated Annealing fiber-to-target allocation simulations for the proposed DESI and 4MOST massively multiplexed spectroscopic surveys, and for both Poisson and realistically clustered mock target samples. We simulate both Echidna and theta-phi actuator designs, including the restrictions caused by the physical actuator characteristics during repositioning. For DESI, with theta-phi actuators, used in 5 passes over the sky for a mock ELG/LRG/QSO sample, with matched fiber and target densities, a total target allocation yield of 89.3% was achieved, but only 83.7% for the high-priority Ly-alpha QSOs. If Echidna actuators are used with the same pitch and number of passes, the yield increases by 5.7% and 16% respectively. Echidna also allows a factor-of-two increase in the number of close Ly-alpha QSO pairs that can be observed. Echidna spine tilt causes a variable loss of throughput, with average loss being the same as the loss at the rms tilt. With a natural tilt minimization scheme, we find an rms tilt always close to 0.58 x maximum. There is an additional but much smaller defocus loss, equivalent to an average defocus of 30microns. These tilt losses offset the gains in yield for Echidna, but because the survey strategy is driven by the higher priority targets, a clear survey speed advantage remains. For 4MOST, high and low latitude sample mock catalogs were supplied by the 4MOST team, and allocations were carried out with the proposed Echidna-based positioner geometry. At high latitudes, the resulting target completeness was 85.3% for LR targets and 78.9% for HR targets. At low latitude, the target completeness was 93.9% for LR targets and 71.2% for HR targets.
Hot, dust-obscured galaxies (Hot DOGs) are a population of hyper-luminous obscured quasars identified by WISE. We present ALMA observations of the [CII] fine-structure line and underlying dust continuum emission in a sample of seven of the most extremely luminous (EL; L$_{rm bol}$ $ge$ 10$^{14}$ L$_odot$) Hot DOGs, at redshifts z ~ 3.0-4.6. The [CII] line is robustly detected in four objects, tentatively in one, and likely red-shifted out of the spectral window in the remaining two based on additional data. On average, [CII] is red-shifted by ~ 780 km/s from rest-frame ultraviolet emission lines. EL Hot DOGs exhibit consistently very high ionized gas surface densities, with $Sigma_{rm [CII]}$ ~ 1-2 x 10$^{9}$ L$_odot$ kpc$^{-2}$; as high as the most extreme cases seen in other high-redshift quasars. As a population, EL Hot DOG hosts seem to be roughly centered on the main-sequence of star forming galaxies, but the uncertainties are substantial and individual sources can fall above and below. The average, intrinsic [CII] and dust continuum sizes (FWHMs) are ~ 2.1 kpc and ~ 1.6 kpc, respectively, with a very narrow range of line-to-continuum size ratios, 1.61 $pm$ 0.10, suggesting they could be linearly proportional. The [CII] velocity fields of EL Hot DOGs are diverse: from barely rotating structures, to resolved hosts with ordered, circular motions, to complex, disturbed systems that are likely the result of ongoing mergers. In contrast, all sources display large line-velocity dispersions, FWHM $gtrsim$ 500 km/s, which on average are larger than optically and IR-selected quasars at similar or higher redshifts. We argue that one possible hypothesis for the lack of a common velocity structure, the systematically large dispersion of the ionized gas, and the presence of nearby companion galaxies may be that, rather than a single event, the EL Hot DOG phase could be recurrent.
Context:Quasars radiating at extreme Eddington ratios (xA) are likely a prime mover of galactic evolution and have been hailed as potential distance indicators. Their properties are still scarcely known. Aims:We test the effectiveness of the selection criteria defined on the 4D Eigenvector 1 (4DE1) for identifying xA sources. We provide a quantitative description of their UV spectra in the redshift range 2<z<2.9. Methods:19 extreme quasar candidates were identified using 4DE1 selection criteria applied to SDSS spectra: AlIII1860/SiIII]1892>0.5 and CIII]1909/SiIII]1892<1. The emission line spectra was studied using multicomponent fits of deep spectroscopic observations obtained with the OSIRIS-GTC. Results:Spectra confirm that almost all of these quasars are xA sources with very similar properties. We provide spectrophotometric and line profile measurements for the SiIV1397+OIV]1402, CIV1549+HeII1640, and the 1900A blend composed by AlIII1860, SiIII]1892, FeIII and a weak CIII]1909. The spectra can be characterized as very low ionization (logU~-3), a condition that explains the significant FeIII emission. CIV1549 shows low equivalent width (<30 A for the most sources), and high or extreme blueshift amplitudes (-5000<c(1/2)<-1000 kms-1). Weak-lined quasars appear as extreme xA quasars and not as an independent class. The CIV1549 high amplitude blueshifts coexists in all cases save one with symmetric and narrower AlIII and SiIII] profiles. Estimates of the Eddington ratio using the AlIII FWHM as a virial broadening estimator are consistent with the ones of a previous xA sample. Conclusions:It is now feasible to assemble large samples of xA quasars from the latest data releases of the SDSS. We provide evidence that AlIII1860 could be associated with a low-ionization virialized sub-system, supporting previous suggestions that AlIII is a reliable virial broadening estimator.