We estimate the beam-normal single-spin asymmetry in elastic lepton-proton scattering without employing the ultrarelativistic approximation. Our calculation is relevant for analyses of muon scattering at energies of few hundred MeV and below -- when effects of the muon mass become essential. At such energies, the transverse polarization of the muon beam is expected to contribute significantly to the systematic uncertainty of precision measurements of elastic muon-proton scattering. We evaluate such systematics using an example of the MUSE experiment at PSI. The muon asymmetry is estimated at about 0.1% in kinematics of MUSE and it is the largest for scattering into a backward hemisphere.
We estimate the target-normal single-spin asymmetry at nearly forward angles in elastic electron-nucleon scattering. In the leading-order approximation, this asymmetry is proportional to the imaginary part of the two-photon exchange (TPE) amplitude, which can be expressed as an integral over the doubly virtual Compton scattering (VVCS) tensor. We develop a model that parametrizes the VVCS tensor for the case of nearly forward scattering angles. Our parametrization ensures a proper normalization of the imaginary part of the TPE amplitude on the well-known forward limit expression, which is given in terms of nucleon structure functions measurable in inelastic electron-nucleon scattering experiments. We discuss applicability limits of our theory and provide target-normal single-spin asymmetry predictions for both elastic electron-proton and electron-neutron scattering.
A beam-normal single-spin asymmetry generated in the scattering of transversely polarized electrons from unpolarized nucleons is an observable related to the imaginary part of the two-photon exchange process. We report a 2% precision measurement of the beam-normal single-spin asymmetry in elastic electron-proton scattering with a mean scattering angle of theta_lab = 7.9 degrees and a mean energy of 1.149 GeV. The asymmetry result is B_n = -5.194 +- 0.067 (stat) +- 0.082 (syst) ppm. This is the most precise measurement of this quantity available to date and therefore provides a stringent test of two-photon exchange models at far-forward scattering angles (theta_lab -> 0) where they should be most reliable.
The transverse beam spin induced asymmetry is calculated for the scattering of transversally polarized electrons on a proton target within a realistic model. Such asymmetry is due to the interference between the Born amplitude and the imaginary part of two photon exchange amplitude. In particular, the contribution of non-excited hadron state (elastic) to the two photon amplitude is calculated. The elastic contribution requires infrared divergences regularization and can be expressed in terms of numerical integrals of the target form factor. The inelastic channel corresponding to the one pion hadronic state contribution is enhanced by squared logarithmic terms. We show that the ratio of elastic over inelastic channel is of the order of 0.3 and cannot be ignored. Enhancement effects due to the decreasing of form factors bring the transverse beam asymmetry to values as large as $10^{-4}$ for particular kinematical conditions.
We study the beam-normal single-spin asymmetry (BNSSA) in high-energy elastic electron scattering from several spin-0 nuclei. Existing theoretical approaches work in the plane-wave formalism and predict the BNSSA to scale as $sim A/Z$ with the atomic number $Z$ and nuclear mass number $A$. While this prediction holds for light and intermediate nuclei, a striking disagreement in both the sign and the magnitude of BNSSA was observed by the PREX collaboration for $^{208}$Pb, coined the PREX puzzle. To shed light on this disagreement, we go beyond the plane-wave approach which neglects Coulomb distortions known to be significant for heavy nuclei. We explicitly investigate the dependence of BNSSA on $A$ and $Z$ by i) including inelastic intermediate states contributions into the Coulomb problem in the form of an optical potential, ii) by accounting for the experimental information on the $A$-dependence of the Compton slope parameter, and iii) giving a thorough account of the uncertainties of the calculation. Despite of these improvements, the PREX puzzle remains unexplained. We discuss further strategies to resolve this riddle.
We report on a new measurement of the beam-normal single spin asymmetry $A_{mathrm{n}}$ in the elastic scattering of 570 MeV transversely polarized electrons off $^{28}$Si and $^{90}$Zr at $Q^{2}=0.04, mathrm{GeV}^2/c^2$. The studied kinematics allow for a comprehensive comparison with former results on $^{12}$C. No significant mass dependence of the beam-normal single spin asymmetry is observed in the mass regime from $^{12}$C to $^{90}$Zr.