No Arabic abstract
A signature result in compressed sensing is that Gaussian random sampling achieves stable and robust recovery of sparse vectors under optimal conditions on the number of measurements. However, in the context of image reconstruction, it has been extensively documented that sampling strategies based on Fourier measurements outperform this purportedly optimal approach. Motivated by this seeming paradox, we investigate the problem of optimal sampling for compressed sensing. Rigorously combining the theories of wavelet approximation and infinite-dimensional compressed sensing, our analysis leads to new error bounds in terms of the total number of measurements $m$ for the approximation of piecewise $alpha$-H{o}lder functions. Our theoretical findings suggest that Fourier sampling outperforms random Gaussian sampling when the Holder exponent $alpha$ is large enough. Moreover, we establish a provably optimal sampling strategy. This work is an important first step towards the resolution of the claimed paradox, and provides a clear theoretical justification for the practical success of compressed sensing techniques in imaging problems.
In this paper, based on a successively accuracy-increasing approximation of the $ell_0$ norm, we propose a new algorithm for recovery of sparse vectors from underdetermined measurements. The approximations are realized with a certain class of concave functions that aggressively induce sparsity and their closeness to the $ell_0$ norm can be controlled. We prove that the series of the approximations asymptotically coincides with the $ell_1$ and $ell_0$ norms when the approximation accuracy changes from the worst fitting to the best fitting. When measurements are noise-free, an optimization scheme is proposed which leads to a number of weighted $ell_1$ minimization programs, whereas, in the presence of noise, we propose two iterative thresholding methods that are computationally appealing. A convergence guarantee for the iterative thresholding method is provided, and, for a particular function in the class of the approximating functions, we derive the closed-form thresholding operator. We further present some theoretical analyses via the restricted isometry, null space, and spherical section properties. Our extensive numerical simulations indicate that the proposed algorithm closely follows the performance of the oracle estimator for a range of sparsity levels wider than those of the state-of-the-art algorithms.
This letter investigates the joint recovery of a frequency-sparse signal ensemble sharing a common frequency-sparse component from the collection of their compressed measurements. Unlike conventional arts in compressed sensing, the frequencies follow an off-the-grid formulation and are continuously valued in $leftlbrack 0,1 rightrbrack$. As an extension of atomic norm, the concatenated atomic norm minimization approach is proposed to handle the exact recovery of signals, which is reformulated as a computationally tractable semidefinite program. The optimality of the proposed approach is characterized using a dual certificate. Numerical experiments are performed to illustrate the effectiveness of the proposed approach and its advantage over separate recovery.
In this work, we analyze the failing sets of the interval-passing algorithm (IPA) for compressed sensing. The IPA is an efficient iterative algorithm for reconstructing a k-sparse nonnegative n-dimensional real signal x from a small number of linear measurements y. In particular, we show that the IPA fails to recover x from y if and only if it fails to recover a corresponding binary vector of the same support, and also that only positions of nonzero values in the measurement matrix are of importance for success of recovery. Based on this observation, we introduce termatiko sets and show that the IPA fails to fully recover x if and only if the support of x contains a nonempty termatiko set, thus giving a complete (graph-theoretic) description of the failing sets of the IPA. Finally, we present an extensive numerical study showing that in many cases there exist termatiko sets of size strictly smaller than the stopping distance of the binary measurement matrix; even as low as half the stopping distance in some cases.
Evaluating the statistical dimension is a common tool to determine the asymptotic phase transition in compressed sensing problems with Gaussian ensemble. Unfortunately, the exact evaluation of the statistical dimension is very difficult and it has become standard to replace it with an upper-bound. To ensure that this technique is suitable, [1] has introduced an upper-bound on the gap between the statistical dimension and its approximation. In this work, we first show that the error bound in [1] in some low-dimensional models such as total variation and $ell_1$ analysis minimization becomes poorly large. Next, we develop a new error bound which significantly improves the estimation gap compared to [1]. In particular, unlike the bound in [1] that is not applicable to settings with overcomplete dictionaries, our bound exhibits a decaying behavior in such cases.
Snapshot compressed sensing (CS) refers to compressive imaging systems in which multiple frames are mapped into a single measurement frame. Each pixel in the acquired frame is a noisy linear mapping of the corresponding pixels in the frames that are combined together. While the problem can be cast as a CS problem, due to the very special structure of the sensing matrix, standard CS theory cannot be employed to study such systems. In this paper, a compression-based framework is employed for theoretical analysis of snapshot CS systems. It is shown that this framework leads to two novel, computationally-efficient and theoretically-analyzable compression-based recovery algorithms. The proposed methods are iterative and employ compression codes to define and impose the structure of the desired signal. Theoretical convergence guarantees are derived for both algorithms. In the simulations, it is shown that, in the cases of both noise-free and noisy measurements, combining the proposed algorithms with a customized video compression code, designed to exploit nonlocal structures of video frames, significantly improves the state-of-the-art performance.