Do you want to publish a course? Click here

Distributed Compressed Sensing off the Grid

157   0   0.0 ( 0 )
 Added by Zhenqi Lu
 Publication date 2014
and research's language is English




Ask ChatGPT about the research

This letter investigates the joint recovery of a frequency-sparse signal ensemble sharing a common frequency-sparse component from the collection of their compressed measurements. Unlike conventional arts in compressed sensing, the frequencies follow an off-the-grid formulation and are continuously valued in $leftlbrack 0,1 rightrbrack$. As an extension of atomic norm, the concatenated atomic norm minimization approach is proposed to handle the exact recovery of signals, which is reformulated as a computationally tractable semidefinite program. The optimality of the proposed approach is characterized using a dual certificate. Numerical experiments are performed to illustrate the effectiveness of the proposed approach and its advantage over separate recovery.



rate research

Read More

112 - Zhipeng Xue , Junjie Ma , 2017
Turbo compressed sensing (Turbo-CS) is an efficient iterative algorithm for sparse signal recovery with partial orthogonal sensing matrices. In this paper, we extend the Turbo-CS algorithm to solve compressed sensing problems involving more general signal structure, including compressive image recovery and low-rank matrix recovery. A main difficulty for such an extension is that the original Turbo-CS algorithm requires prior knowledge of the signal distribution that is usually unavailable in practice. To overcome this difficulty, we propose to redesign the Turbo-CS algorithm by employing a generic denoiser that does not depend on the prior distribution and hence the name denoising-based Turbo-CS (D-Turbo-CS). We then derive the extrinsic information for a generic denoiser by following the Turbo-CS principle. Based on that, we optimize the parametric extrinsic denoisers to minimize the output mean-square error (MSE). Explicit expressions are derived for the extrinsic SURE-LET denoiser used in compressive image denoising and also for the singular value thresholding (SVT) denoiser used in low-rank matrix denoising. We find that the dynamics of D-Turbo-CS can be well described by a scaler recursion called MSE evolution, similar to the case for Turbo-CS. Numerical results demonstrate that D-Turbo-CS considerably outperforms the counterpart algorithms in both reconstruction quality and running time.
The problem of recovering a structured signal from its linear measurements in the presence of speckle noise is studied. This problem appears in many imaging systems such as synthetic aperture radar and optical coherence tomography. The current acquisition technology oversamples signals and converts the problem into a denoising problem with multiplicative noise. However, this paper explores the possibility of reducing the number of measurements below the ambient dimension of the signal. The sophistications that appear in the study of multiplicative noises have so far impeded theoretical analysis of such problems. This paper aims to present the first theoretical result regarding the recovery of signals from their undersampled measurements under the speckle noise. It is shown that if the signal class is structured, in the sense that the signals can be compressed efficiently, then one can obtain accurate estimates of the signal from fewer measurements than the ambient dimension. We demonstrate the effectiveness of the methods we propose through simulation results.
Distributed Compressive Sensing (DCS) improves the signal recovery performance of multi signal ensembles by exploiting both intra- and inter-signal correlation and sparsity structure. However, the existing DCS was proposed for a very limited ensemble of signals that has single common information cite{Baron:2009vd}. In this paper, we propose a generalized DCS (GDCS) which can improve sparse signal detection performance given arbitrary types of common information which are classified into not just full common information but also a variety of partial common information. The theoretical bound on the required number of measurements using the GDCS is obtained. Unfortunately, the GDCS may require much a priori-knowledge on various inter common information of ensemble of signals to enhance the performance over the existing DCS. To deal with this problem, we propose a novel algorithm that can search for the correlation structure among the signals, with which the proposed GDCS improves detection performance even without a priori-knowledge on correlation structure for the case of arbitrarily correlated multi signal ensembles.
Compressed sensing (CS) or sparse signal reconstruction (SSR) is a signal processing technique that exploits the fact that acquired data can have a sparse representation in some basis. One popular technique to reconstruct or approximate the unknown sparse signal is the iterative hard thresholding (IHT) which however performs very poorly under non-Gaussian noise conditions or in the face of outliers (gross errors). In this paper, we propose a robust IHT method based on ideas from $M$-estimation that estimates the sparse signal and the scale of the error distribution simultaneously. The method has a negligible performance loss compared to IHT under Gaussian noise, but superior performance under heavy-tailed non-Gaussian noise conditions.
In this paper, based on a successively accuracy-increasing approximation of the $ell_0$ norm, we propose a new algorithm for recovery of sparse vectors from underdetermined measurements. The approximations are realized with a certain class of concave functions that aggressively induce sparsity and their closeness to the $ell_0$ norm can be controlled. We prove that the series of the approximations asymptotically coincides with the $ell_1$ and $ell_0$ norms when the approximation accuracy changes from the worst fitting to the best fitting. When measurements are noise-free, an optimization scheme is proposed which leads to a number of weighted $ell_1$ minimization programs, whereas, in the presence of noise, we propose two iterative thresholding methods that are computationally appealing. A convergence guarantee for the iterative thresholding method is provided, and, for a particular function in the class of the approximating functions, we derive the closed-form thresholding operator. We further present some theoretical analyses via the restricted isometry, null space, and spherical section properties. Our extensive numerical simulations indicate that the proposed algorithm closely follows the performance of the oracle estimator for a range of sparsity levels wider than those of the state-of-the-art algorithms.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا