No Arabic abstract
Three-body recombination in quantum gases is traditionally associated with heating, but it was recently found that it can also cool the gas. We show that in a partially condensed three-dimensional homogeneous Bose gas three-body loss could even purify the sample, that is, reduce the entropy per particle and increase the condensed fraction $eta$. We predict that the evolution of $eta$ under continuous three-body loss can, depending on small changes in the initial conditions, exhibit two qualitatively different behaviours - if it is initially above a certain critical value, $eta$ increases further, whereas clouds with lower initial $eta$ evolve towards a thermal gas. These dynamical effects should be observable under realistic experimental conditions.
Bose-Einstein condensation is unique among phase transitions between different states of matter in the sense that it occurs even in the absence of interactions between particles. In Einsteins textbook picture of an ideal gas, purely statistical arguments set an upper bound on the number of particles occupying the excited states of the system, and condensation is driven by this saturation of the quantum vapour. Dilute ultracold atomic gases are celebrated as a realisation of Bose-Einstein condensation in close to its purely statistical form. Here we scrutinise this point of view using an ultracold gas of potassium (39K) atoms, in which the strength of interactions can be tuned via a Feshbach scattering resonance. We first show that under typical experi-mental conditions a partially condensed atomic gas strongly deviates from the textbook concept of a saturated vapour. We then use measurements at a range of interaction strengths and temperatures to extrapolate to the non-interacting limit, and prove that in this limit the behaviour of a Bose gas is consistent with the saturation picture. Finally, we provide evidence for the universality of our observations through additional measurements with a different atomic species, 87Rb. Our results suggest a new way of characterising condensation phenomena in different physical systems.
By quenching the strength of interactions in a partially condensed Bose gas we create a super-saturated vapor which has more thermal atoms than it can contain in equilibrium. Subsequently, the number of condensed atoms ($N_0$) grows even though the temperature ($T$) rises and the total atom number decays. We show that the non-equilibrium evolution of the system is isoenergetic and for small initial $N_0$ observe a clear separation between $T$ and $N_0$ dynamics, thus explicitly demonstrating the theoretically expected two-step picture of condensate growth. For increasing initial $N_0$ values we observe a crossover to classical relaxation dynamics. The size of the observed quench-induced effects can be explained using a simple equation of state for an interacting harmonically-trapped atomic gas.
Three-body recombination is a phenomenon common in atomic and molecular collisions, producing heating in the system. However, we find the cooling effect of the three-body recombination of a 6Li Fermi gas near its s-wave narrow Feshbach resonance. Such counter-intuitive behavior is explained as follows, the threshold energy of the quasi-bounded Feshbach molecule acts as the knife of cooling, expelling the scattering atoms with selected kinetic energy from the trap. When the threshold energy happens to be larger than 3/2kBT, each lost atom in the three-body recombination process has more than 3kBT energy which results in cooling. The best cooling is found with the threshold energy set at about 3kBT, consistent with a theoretical model. The three-body recombination induced cooling raises potential applications for cooling complex atomic systems.
We study the thermodynamics of Bose-Einstein condensation in a weakly interacting quasi-homogeneous atomic gas, prepared in an optical-box trap. We characterise the critical point for condensation and observe saturation of the thermal component in a partially condensed cloud, in agreement with Einsteins textbook picture of a purely statistical phase transition. Finally, we observe the quantum Joule-Thomson effect, namely isoenthalpic cooling of an (essentially) ideal gas. In our experiments this cooling occurs spontaneously, due to energy-independent collisions with the background gas in the vacuum chamber. We extract a Joule-Thomson coefficient $mu_{rm JT} > 10^9$ K/bar, about ten orders of magnitude larger than observed in classical gases.
Scale-invariant fluxes are the defining property of turbulent cascades, but their direct measurement is a notorious problem. Here we perform such a measurement for a direct energy cascade in a turbulent quantum gas. Using a time-periodic force, we inject energy at a large lengthscale and generate a cascade in a uniformly-trapped Bose gas. The adjustable trap depth provides a high-momentum cutoff $k_{textrm{D}}$, which realises a synthetic dissipation scale. This gives us direct access to the particle flux across a momentum shell of radius $k_{textrm{D}}$, and the tunability of $k_{textrm{D}}$ allows for a clear demonstration of the zeroth law of turbulence: we observe that for fixed forcing the particle flux vanishes as $k_{textrm{D}}^{-2}$ in the dissipationless limit $k_{textrm{D}}rightarrow infty$, while the energy flux is independent of $k_{textrm{D}}$. Moreover, our time-resolved measurements give unique access to the pre-steady-state dynamics, when the cascade front propagates in momentum space.