No Arabic abstract
In contrast to the classic fashion for designing distributed end-to-end (e2e) TCP schemes for cellular networks (CN), we explore another design space by having the CN assist the task of the transport control. We show that in the emerging cellular architectures such as mobile/multi-access edge computing (MEC), where the servers are located close to the radio access network (RAN), significant improvements can be achieved by leveraging the nature of the logically centralized network measurements at the RAN and passing information such as its minimum e2e delay and access link capacity to each server. Particularly, a Network Assistance module (located at the mobile edge) will pair up with wireless scheduler to provide feedback information to each server and facilitate the task of congestion control. To that end, we present two Network Assisted schemes called NATCP (a clean-slate design replacing TCP at end-hosts) and NACubic (a backward compatible design requiring no change for TCP at end-hosts). Our preliminary evaluations using real cellular traces show that both schemes dramatically outperform existing schemes both in single-flow and multi-flow scenarios.
With the proliferation of mobile computing devices, the demand for continuous network connectivity regardless of physical location has spurred interest in the use of mobile ad hoc networks. Since Transmission Control Protocol (TCP) is the standard network protocol for communication in the internet, any wireless network with Internet service need to be compatible with TCP. TCP is tuned to perform well in traditional wired networks, where packet losses occur mostly because of congestion. However, TCP connections in Ad-hoc mobile networks are plagued by problems such as high bit error rates, frequent route changes, multipath routing and temporary network partitions. The throughput of TCP over such connection is not satisfactory, because TCP misinterprets the packet loss or delay as congestion and invokes congestion control and avoidance algorithm. In this research, the performance of TCP in Adhoc mobile network with high Bit Error rate (BER) and mobility is studied and investigated. Simulation model is implemented and experiments are performed using the Network Simulatior 2 (NS2).
With more applications moving to the cloud, cloud providers need to diagnose performance problems in a timely manner. Offline processing of logs is slow and inefficient, and instrumenting the end-host network stack would violate the tenants rights to manage their own virtual machines (VMs). Instead, our Dapper system analyzes TCP performance in real time near the end-hosts (e.g., at the hypervisor, NIC, or top-of-rack switch). Dapper determines whether a connection is limited by the sender (e.g., a slow server competing for shared resources), the network (e.g., congestion), or the receiver (e.g., small receive buffer). Emerging edge devices now offer flexible packet processing at high speed on commodity hardware, making it possible to monitor TCP performance in the data plane, at line rate. We use P4 to prototype Dapper and evaluate our design on real and synthetic traffic. To reduce the data-plane state requirements, we perform lightweight detection for all connections, followed by heavier-weight diagnosis just for the troubled connections.
Crowdsourcing mobile users network performance has become an effective way of understanding and improving mobile network performance and user quality-of-experience. However, the current measurement method is still based on the landline measurement paradigm in which a measurement app measures the path to fixed (measurement or web) servers. In this work, we introduce a new paradigm of measuring per-app mobile network performance. We design and implement MopEye, an Android app to measure network round-trip delay for each app whenever there is app traffic. This opportunistic measurement can be conducted automatically without users intervention. Therefore, it can facilitate a large-scale and long-term crowdsourcing of mobile network performance. In the course of implementing MopEye, we have overcome a suite of challenges to make the continuous latency monitoring lightweight and accurate. We have deployed MopEye to Google Play for an IRB-approved crowdsourcing study in a period of ten months, which obtains over five million measurements from 6,266 Android apps on 2,351 smartphones. The analysis reveals a number of new findings on the per-app network performance and mobile DNS performance.
This study is a first attempt to experimentally explore the range of performance bottlenecks that 5G mobile networks can experience. To this end, we leverage a wide range of measurements obtained with a prototype testbed that captures the key aspects of a cloudified mobile network. We investigate the relevance of the metrics and a number of approaches to accurately and efficiently identify bottlenecks across the different locations of the network and layers of the system architecture. Our findings validate the complexity of this task in the multi-layered architecture and highlight the need for novel monitoring approaches that intelligently fuse metrics across network layers and functions. In particular, we find that distributed analytics performs reasonably well both in terms of bottleneck identification accuracy and incurred computational and communication overhead.
In this paper, we study unmanned aerial vehicle (UAV) assisted mobile edge computing (MEC) with the objective to optimize computation offloading with minimum UAV energy consumption. In the considered scenario, a UAV plays the role of an aerial cloudlet to collect and process the computation tasks offloaded by ground users. Given the service requirements of users, we aim to maximize UAV energy efficiency by jointly optimizing the UAV trajectory, the user transmit power, and computation load allocation. The resulting optimization problem corresponds to nonconvex fractional programming, and the Dinkelbach algorithm and the successive convex approximation (SCA) technique are adopted to solve it. Furthermore, we decompose the problem into multiple subproblems for distributed and parallel problem solving. To cope with the case when the knowledge of user mobility is limited, we adopt a spatial distribution estimation technique to predict the location of ground users so that the proposed approach can still be applied. Simulation results demonstrate the effectiveness of the proposed approach for maximizing the energy efficiency of UAV.