Do you want to publish a course? Click here

A fast-switching magnet serving a spallation-driven ultracold neutron source

86   0   0.0 ( 0 )
 Added by Jeffery Martin
 Publication date 2019
  fields Physics
and research's language is English
 Authors S. Ahmed




Ask ChatGPT about the research

A fast-switching, high-repetition-rate magnet and power supply have been developed for and operated at TRIUMF, to deliver a proton beam to the new ultracold neutron (UCN) facility. The facility possesses unique operational requirements: a time-averaged beam current of 40~$mu$A with the ability to switch the beam on or off for several minutes. These requirements are in conflict with the typical operation mode of the TRIUMF cyclotron which delivers nearly continuous beam to multiple users. To enable the creation of the UCN facility, a beam-sharing arrangement with another facility was made. The beam sharing is accomplished by the fast-switching (kicker) magnet which is ramped in 50~$mu$s to a current of 193~A, held there for approximately 1~ms, then ramped down in the same short period of time. This achieves a 12~mrad deflection which is sufficient to switch the proton beam between the two facilities. The kicker magnet relies on a high-current, low-inductance coil connected to a fast-switching power supply that is based on insulated-gate bipolar transistors (IGBTs). The design and performance of the kicker magnet system and initial beam delivery results are reported.



rate research

Read More

We report on our efforts to optimize the geometry of neutron moderators and converters for the TRIUMF UltraCold Advanced Neutron (TUCAN) source using MCNP simulations. It will use an existing spallation neutron source driven by a 19.3 kW proton beam delivered by TRIUMFs 520 MeV cyclotron. Spallation neutrons will be moderated in heavy water at room temperature and in liquid deuterium at 20 K, and then superthermally converted to ultracold neutrons in superfluid, isotopically purified $^4$He. The helium will be cooled by a $^3$He fridge through a $^3$He-$^4$He heat exchanger. The optimization took into account a range of engineering and safety requirements and guided the detailed design of the source. The predicted ultracold-neutron density delivered to a typical experiment is maximized for a production volume of 27 L, achieving a production rate of $1.4 cdot 10^7$ s$^{-1}$ to $1.6 cdot 10^7$ s$^{-1}$ with a heat load of 8.1 W. At that heat load, the fridge can cool the superfluid helium to 1.1 K, resulting in a storage lifetime for ultracold neutrons in the source of about 30 s. The most critical performance parameters are the choice of cold moderator and the volume, thickness, and material of the vessel containing the superfluid helium. The source is scheduled to be installed in 2021 and will enable the TUCAN collaboration to measure the electric dipole moment of the neutron with a sensitivity of $10^{-27}$ e cm.
The physics model of a next-generation spallation-driven high-current ultracold neutron (UCN) source capable of delivering an extracted UCN rate of around an-order-of-magnitude higher than the strongest proposed sources, and around three-orders-of-magnitude higher than existing sources, is presented. This UCN-current-optimized source would dramatically improve cutting-edge UCN measurements that are currently statistically limited. A novel Inverse Geometry design is used with 40 L of superfluid $^4$He (He-II), which acts as a converter of cold neutrons (CNs) to UCNs, cooled with state-of-the-art sub-cooled cryogenic technology to $sim$1.6 K. Our design is optimized for a 100 W maximum heat load constraint on the He-II and its vessel. In our geometry, the spallation target is wrapped symmetrically around the UCN converter to permit raster scanning the proton beam over a relatively large volume of tungsten spallation target to reduce the demand on the cooling requirements, which makes it reasonable to assume that water edge-cooling only is sufficient. Our design is refined in several steps to reach $P_{UCN}=2.1times10^9,/$s under our other restriction of 1 MW maximum available proton beam power. We then study effects of the He-II scattering kernel as well as reductions in $P_{UCN}$ due to pressurization to reach $P_{UCN}=1.8times10^9,/$s. Finally, we provide a design for the UCN extraction system that takes into account the required He-II heat transport properties and implementation of a He-II containment foil that allows UCN transmission. We estimate a total useful UCN current from our source of $R_{use}=5times10^8,/$s from a 18 cm diameter guide 5 m from the source. Under a conservative no return approximation, this rate can produce an extracted density of $>1times10^4,/$cm$^3$ in $<$1000~L external experimental volumes with a $^{58}$Ni (335 neV) cut-off potential.
The wavelengths and energies of thermal and cold neutrons are ideally matched to the length and energy scales in the materials that underpin technologies of the present and future: ranging from semiconductors to magnetic devices, composites to biomaterials and polymers. The Spallation Neutron Source (SNS) will use an accelerator to produce the most intense beams of neutrons in the world when it is complete at the end of 2005. The project is being built by a collaboration of six U.S. Department of Energy laboratories. It will serve a diverse community of users drawn from academia, industry, and government labs with interests in condensed matter physics, chemistry, engineering materials, biology, and beyond.
300 - Nobuhiro Shigyo 2012
Neutron energy spectrum from 120 GeV protons on a thick copper target was measured at the Meson Test Beam Facility (MTBF) at Fermi National Accelerator Laboratory. The data allows for evaluation of neutron production process implemented in theoretical simulation codes. It also helps exploring the reasons for some disagreement between calculation results and shielding benchmark data taken at high energy accelerator facilities, since it is evaluated separately from neutron transport. The experiment was carried out using a 120 GeV proton beam of 3E5 protons/spill. Since the spill duration was 4 seconds, proton-induced events were counted pulse by pulse. The intensity was maintained using diffusers and collimators installed in the beam line to MTBF. The protons hit a copper block target the size of which is 5cm x 5cm x 60 cm long. The neutrons produced in the target were measured using NE213 liquid scintillator detectors, placed about 5.5 m away from the target at 30^{circ} and 5 m 90^{circ} with respect to the proton beam axis. The neutron energy was determined by time-of-flight technique using timing difference between the NE213 and a plastic scintillator located just before the target. Neutron detection efficiency of NE213 was determined on basis of experimental data from the high energy neutron beam line at Los Alamos National Laboratory. The neutron spectrum was compared with the results of multi-particle transport codes to validate the implemented theoretical models. The apparatus would be applied to future measurements to obtain a systematic data set for secondary particle production on various target materials.
464 - Weiren Chou 2003
This lecture is an introduction to the design of a spallation neutron source and other high intensity proton sources. It discusses two different approaches: linac-based and synchrotron-based. The requirements and design concepts of each approach are presented. The advantages and disadvantages are compared. A brief review of existing machines and those under construction and proposed is also given. An R&D program is included in an appendix.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا