Do you want to publish a course? Click here

Spacelike deformations: Higher-helicity fields from scalar fields

126   0   0.0 ( 0 )
 Added by Karl-Henning Rehren
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

In contrast to Hamiltonian perturbation theory which changes the time evolution, spacelike deformations proceed by changing the translations (momentum operators). The free Maxwell theory is only the first member of an infinite family of spacelike deformations of the complex massless Klein-Gordon quantum field into fields of higher helicity. A similar but simpler instance of spacelike deformation allows to increase the mass of scalar fields.



rate research

Read More

We present a general construction of divergence-free knotted vector fields from complex scalar fields, whose closed field lines encode many kinds of knots and links, including torus knots, their cables, the figure-8 knot and its generalizations. As finite-energy physical fields they represent initial states for fields such as the magnetic field in a plasma, or the vorticity field in a fluid. We give a systematic procedure for calculating the vector potential, starting from complex scalar functions with knotted zero filaments, thus enabling an explicit computation of the helicity of these knotted fields. The construction can be used to generate isolated knotted flux tubes, filled by knots encoded in the lines of the vector field. Lastly we give examples of manifestly knotted vector fields with vanishing helicity. Our results provide building blocks for analytical models and simulations alike.
140 - V. V. Varlamov 2011
$CPT$ groups of higher spin fields are defined in the framework of automorphism groups of Clifford algebras associated with the complex representations of the proper orthochronous Lorentz group. Higher spin fields are understood as the fields on the Poincar{e} group which describe orientable (extended) objects. A general method for construction of $CPT$ groups of the fields of any spin is given. $CPT$ groups of the fields of spin-1/2, spin-1 and spin-3/2 are considered in detail. $CPT$ groups of the fields of tensor type are discussed. It is shown that tensor fields correspond to particles of the same spin with different masses.
We construct the general solution of a class of Fuchsian systems of rank $N$ as well as the associated isomonodromic tau functions in terms of semi-degenerate conformal blocks of $W_N$-algebra with central charge $c=N-1$. The simplest example is given by the tau function of the Fuji-Suzuki-Tsuda system, expressed as a Fourier transform of the 4-point conformal block with respect to intermediate weight. Along the way, we generalize the result of Bowcock and Watts on the minimal set of matrix elements of vertex operators of the $W_N$-algebra for generic central charge and prove several properties of semi-degenerate vertex operators and conformal blocks for $c=N-1$.
In this paper we shall study vacuum fluctuations of a single scalar field with Dirichlet boundary conditions in a finite but very long line. The spectral heat kernel, the heat partition function and the spectral zeta function are calculated in terms of Riemann Theta functions, the error function, and hypergeometric PFQ functions.
167 - G. Sardanashvily , A. Kurov 2013
Higgs fields are attributes of classical gauge theory on a principal bundle $Pto X$ whose structure Lie group $G$ if is reducible to a closed subgroup $H$. They are represented by sections of the quotient bundle $P/Hto X$. A problem lies in description of matter fields with an exact symmetry group $H$. They are represented by sections of a composite bundle which is associated to an $H$-principal bundle $Pto P/H$. It is essential that they admit an action of a gauge group $G$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا