Do you want to publish a course? Click here

TopoResNet: A hybrid deep learning architecture and its application to skin lesion classification

98   0   0.0 ( 0 )
 Added by Yu-Min Chung
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Skin cancer is one of the most common cancers in the United States. As technological advancements are made, algorithmic diagnosis of skin lesions is becoming more important. In this paper, we develop algorithms for segmenting the actual diseased area of skin in a given image of a skin lesion, and for classifying different types of skin lesions pictured in a given image. The cores of the algorithms used were based in persistent homology, an algebraic topology technique that is part of the rising field of Topological Data Analysis (TDA). The segmentation algorithm utilizes a similar concept to persistent homology that captures the robustness of segmented regions. For classification, we design two families of topological features from persistence diagrams---which we refer to as {em persistence statistics} (PS) and {em persistence curves} (PC), and use linear support vector machine as classifiers. We also combined those topological features, PS and PC, into ResNet-101 model, which we call {em TopoResNet-101}, the results show that PS and PC are effective in two folds---improving classification performances and stabilizing the training process. Although convolutional features are the most important learning targets in CNN models, global information of images may be lost in the training process. Because topological features were extracted globally, our results show that the global property of topological features provide additional information to machine learning models.



rate research

Read More

There has been a steady increase in the incidence of skin cancer worldwide, with a high rate of mortality. Early detection and segmentation of skin lesions are crucial for timely diagnosis and treatment, necessary to improve the survival rate of patients. However, skin lesion segmentation is a challenging task due to the low contrast of lesions and their high similarity in terms of appearance, to healthy tissue. This underlines the need for an accurate and automatic approach for skin lesion segmentation. To tackle this issue, we propose a convolutional neural network (CNN) called SkinNet. The proposed CNN is a modified version of U-Net. We compared the performance of our approach with other state-of-the-art techniques, using the ISBI 2017 challenge dataset. Our approach outperformed the others in terms of the Dice coefficient, Jaccard index and sensitivity, evaluated on the held-out challenge test data set, across 5-fold cross validation experiments. SkinNet achieved an average value of 85.10, 76.67 and 93.0%, for the DC, JI, and SE, respectively.
67 - Cheng Xue , Qi Dou , Xueying Shi 2019
Deep neural networks (DNNs) have achieved great success in a wide variety of medical image analysis tasks. However, these achievements indispensably rely on the accurately-annotated datasets. If with the noisy-labeled images, the training procedure will immediately encounter difficulties, leading to a suboptimal classifier. This problem is even more crucial in the medical field, given that the annotation quality requires great expertise. In this paper, we propose an effective iterative learning framework for noisy-labeled medical image classification, to combat the lacking of high quality annotated medical data. Specifically, an online uncertainty sample mining method is proposed to eliminate the disturbance from noisy-labeled images. Next, we design a sample re-weighting strategy to preserve the usefulness of correctly-labeled hard samples. Our proposed method is validated on skin lesion classification task, and achieved very promising results.
Medical image segmentation annotations suffer from inter- and intra-observer variations even among experts due to intrinsic differences in human annotators and ambiguous boundaries. Leveraging a collection of annotators opinions for an image is an interesting way of estimating a gold standard. Although training deep models in a supervised setting with a single annotation per image has been extensively studied, generalizing their training to work with datasets containing multiple annotations per image remains a fairly unexplored problem. In this paper, we propose an approach to handle annotators disagreements when training a deep model. To this end, we propose an ensemble of Bayesian fully convolutional networks (FCNs) for the segmentation task by considering two major factors in the aggregation of multiple ground truth annotations: (1) handling contradictory annotations in the training data originating from inter-annotator disagreements and (2) improving confidence calibration through the fusion of base models predictions. We demonstrate the superior performance of our approach on the ISIC Archive and explore the generalization performance of our proposed method by cross-dataset evaluation on the PH2 and DermoFit datasets.
The segmentation of skin lesions is a crucial task in clinical decision support systems for the computer aided diagnosis of skin lesions. Although deep learning-based approaches have improved segmentation performance, these models are often susceptible to class imbalance in the data, particularly, the fraction of the image occupied by the background healthy skin. Despite variations of the popular Dice loss function being proposed to tackle the class imbalance problem, the Dice loss formulation does not penalize misclassifications of the background pixels. We propose a novel metric-based loss function using the Matthews correlation coefficient, a metric that has been shown to be efficient in scenarios with skewed class distributions, and use it to optimize deep segmentation models. Evaluations on three skin lesion image datasets: the ISBI ISIC 2017 Skin Lesion Segmentation Challenge dataset, the DermoFit Image Library, and the PH2 dataset, show that models trained using the proposed loss function outperform those trained using Dice loss by 11.25%, 4.87%, and 0.76% respectively in the mean Jaccard index. The code is available at https://github.com/kakumarabhishek/MCC-Loss.
The advances in technology have enabled people to access internet from every part of the world. But to date, access to healthcare in remote areas is sparse. This proposed solution aims to bridge the gap between specialist doctors and patients. This prototype will be able to detect skin cancer from an image captured by the phone or any other camera. The network is deployed on cloud server-side processing for an even more accurate result. The Deep Residual learning model has been used for predicting the probability of cancer for server side The ResNet has three parametric layers. Each layer has Convolutional Neural Network, Batch Normalization, Maxpool and ReLU. Currently the model achieves an accuracy of 77% on the ISIC - 2017 challenge.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا