No Arabic abstract
Given a boolean predicate $Pi$ on labeled networks (e.g., proper coloring, leader election, etc.), a self-stabilizing algorithm for $Pi$ is a distributed algorithm that can start from any initial configuration of the network (i.e., every node has an arbitrary value assigned to each of its variables), and eventually converge to a configuration satisfying $Pi$. It is known that leader election does not have a deterministic self-stabilizing algorithm using a constant-size register at each node, i.e., for some networks, some of their nodes must have registers whose sizes grow with the size $n$ of the networks. On the other hand, it is also known that leader election can be solved by a deterministic self-stabilizing algorithm using registers of $O(log log n)$ bits per node in any $n$-node bounded-degree network. We show that this latter space complexity is optimal. Specifically, we prove that every deterministic self-stabilizing algorithm solving leader election must use $Omega(log log n)$-bit per node registers in some $n$-node networks. In addition, we show that our lower bounds go beyond leader election, and apply to all problems that cannot be solved by anonymous algorithms.
It was suggested that a programmable matter system (composed of multiple computationally weak mobile particles) should remain connected at all times since otherwise, reconnection is difficult and may be impossible. At the same time, it was not clear that allowing the system to disconnect carried a significant advantage in terms of time complexity. We demonstrate for a fundamental task, that of leader election, an algorithm where the system disconnects and then reconnects automatically in a non-trivial way (particles can move far away from their former neighbors and later reconnect to others). Moreover, the runtime of the temporarily disconnecting deterministic leader election algorithm is linear in the diameter. Hence, the disconnecting -- reconnecting algorithm is as fast as previous randomized algorithms. When comparing to previous deterministic algorithms, we note that some of the previous work assumed weaker schedulers. Still, the runtime of all the previous deterministic algorithms that did not assume special shapes of the particle system (shapes with no holes) was at least quadratic in $n$, where $n$ is the number of particles in the system. (Moreover, the new algorithm is even faster in some parameters than the deterministic algorithms that did assume special initial shapes.) Since leader election is an important module in algorithms for various other tasks, the presented algorithm can be useful for speeding up other algorithms under the assumption of a strong scheduler. This leaves open the question: can a deterministic algorithm be as fast as the randomized ones also under weaker schedulers?
This paper proposes the first implementation of a self-stabilizing regular register emulated by $n$ servers that is tolerant to both mobile Byzantine agents, and emph{transient failures} in a round-free synchronous model. Differently from existing Mobile Byzantine tolerant register implementations, this paper considers a more powerful adversary where (i) the message delay (i.e., $delta$) and the period of mobile Byzantine agents movement (i.e., $Delta$) are completely decoupled and (ii) servers are not aware of their state i.e., they do not know if they have been corrupted or not by a mobile Byzantine agent.The proposed protocol tolerates emph{(i)} any number of transient failures, and emph{(ii)} up to $f$ Mobile Byzantine agents. In addition, our implementation uses bounded timestamps from the $mathcal{Z}_{13}$ domain and it is optimal with respect to the number of servers needed to tolerate $f$ mobile Byzantine agents in the given model.
This paper provides an algorithmic framework for obtaining fast distributed algorithms for a highly-dynamic setting, in which *arbitrarily many* edge changes may occur in each round. Our algorithm significantly improves upon prior work in its combination of (1) having an $O(1)$ amortized time complexity, (2) using only $O(log{n})$-bit messages, (3) not posing any restrictions on the dynamic behavior of the environment, (4) being deterministic, (5) having strong guarantees for intermediate solutions, and (6) being applicable for a wide family of tasks. The tasks for which we deduce such an algorithm are maximal matching, $(degree+1)$-coloring, 2-approximation for minimum weight vertex cover, and maximal independent set (which is the most subtle case). For some of these tasks, node insertions can also be among the allowed topology changes, and for some of them also abrupt node deletions.
In this paper, we look at the problem of randomized leader election in synchronous distributed networks with a special focus on the message complexity. We provide an algorithm that solves the implicit version of leader election (where non-leader nodes need not be aware of the identity of the leader) in any general network with $O(sqrt{n} log^{7/2} n cdot t_{mix})$ messages and in $O(t_{mix}log^2 n)$ time, where $n$ is the number of nodes and $t_{mix}$ refers to the mixing time of a random walk in the network graph $G$. For several classes of well-connected networks (that have a large conductance or alternatively small mixing times e.g. expanders, hypercubes, etc), the above result implies extremely efficient (sublinear running time and messages) leader election algorithms. Correspondingly, we show that any substantial improvement is not possible over our algorithm, by presenting an almost matching lower bound for randomized leader election. We show that $Omega(sqrt{n}/phi^{3/4})$ messages are needed for any leader election algorithm that succeeds with probability at least $1-o(1)$, where $phi$ refers to the conductance of a graph. To the best of our knowledge, this is the first work that shows a dependence between the time and message complexity to solve leader election and the connectivity of the graph $G$, which is often characterized by the graphs conductance $phi$. Apart from the $Omega(m)$ bound in [Kutten et al., J.ACM 2015] (where $m$ denotes the number of edges of the graph), this work also provides one of the first non-trivial lower bounds for leader election in general networks.
We present a novel self-stabilizing algorithm for minimum spanning tree (MST) construction. The space complexity of our solution is $O(log^2n)$ bits and it converges in $O(n^2)$ rounds. Thus, this algorithm improves the convergence time of all previously known self-stabilizing asynchronous MST algorithms by a multiplicative factor $Theta(n)$, to the price of increasing the best known space complexity by a factor $O(log n)$. The main ingredient used in our algorithm is the design, for the first time in self-stabilizing settings, of a labeling scheme for computing the nearest common ancestor with only $O(log^2n)$ bits.