Do you want to publish a course? Click here

Mass operator of the M2-brane on a background with constant three-form

145   0   0.0 ( 0 )
 Added by Camilo Las Heras
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

The formulation of supermembrane theory on nontrivial backgrounds is discussed. In particular, we obtain the Hamiltonian of the supermembrane on a background with constant bosonic three form on a target space $M_9 times T^2$.



rate research

Read More

We describe a compactified Supermembrane, or M2-brane, with 2-form fluxes generated by constant three-forms that are turned on a 2-torus of the target space $M_9times T^2$. We compare this theory with the one describing a $11D$ M2-brane formulated on $M_9times T^2$ target space subject to an irreducible wrapping condition. We show that the flux generated by the bosonic 3-form under consideration is in a one to one correspondence to the irreducible wrapping condition. After a canonical transformation both Hamiltonians are exactly the same up to a constant shift in one particular case. Consequently both of them, share the same spectral properties. We conclude that the Hamiltonian of the M2-brane with 2-form target space fluxes on a torus has a purely discrete spectrum with eigenvalues of finite multiplicity and it can be considered to describe a new sector of the microscopic degrees of freedom of M-theory. We also show that the total membrane momentum in the direction associated to the flux condition acquires a quantized contribution in correspondence to the flux units that have been turned on.
We compute the large N limit of Wilson loop expectation values for a broad class of N=2 supersymmetric gauge theories defined on a general class of background three-manifolds M_3, diffeomorphic to S^3. We find a simple closed formula which depends on the background geometry only through a certain supersymmetric Killing vector field. The supergravity dual of such a Wilson loop is an M2-brane wrapping the M-theory circle, together with a complex curve in a self-dual Einstein manifold M_4, whose conformal boundary is M_3. We show that the regularized action of this M2-brane also depends only on the supersymmetric Killing vector, precisely reproducing the large N field theory computation.
We present the formulation of the bosonic Hamiltonian M2-brane compactified on a twice punctured torus following the procedure proposed in cite{mpgm14}. In this work we analyse two possible metric choice, different from the one used in cite{mpgm14}, over the target space and study some of the properties of the corresponding Hamiltonian.
We investigate the gauge/gravity duality between the ${cal N} = 6$ mass-deformed ABJ theory with U$_k(N+l)times$U$_{-k}(N)$ gauge symmetry and the 11-dimensional supergravity on LLM geometries with SO(2,1)$times$SO(4)/${mathbb Z}_ktimes$SO(4)/${mathbb Z}_k$ isometry and the discrete torsion $l$. For chiral primary operators with conformal dimensions $Delta=1,2$, we obtain the exact vacuum expectation values using the holographic method in 11-dimensional supergravity and show that the results depend on the shapes of droplet pictures in LLM geometries. The $frac{l}{sqrt{N}}$ contributions from the discrete torsion $l$ for several simple droplet pictures in the large $N$ limit are determined in holographic vacuum expectation values. We also explore the effects of the orbifolding ${mathbb Z}_k$ and the asymptotic discrete torsion $l$, on the gauge/gravity duality dictionary and on the nature of the asymptotic limits of the LLM geometries.
Supermembrane compactified on a $M_9times T^2$ target space is globally described by the inequivalent classes of torus bundles over torus. These torus bundles have monodromy in $SL(2,Z)$ when they correspond to the nontrivial central charge sector and they are trivial otherwise. The first ones contain eight inequivalent classes of M2-brane bundles which at low energies, are in correspondence with the eight type II gauged supergravities in $9D$. The relation among them is completely determined by the global action of T-duality which interchanges topological invariants of the two tori. The M2-brane torus bundles are invariant under $SL(2,Z)times SL(2,Z) times Z_2$. From the effective point of view, there is another dual invariant theory, called Double Field Theory which describe invariant actions under $O(D,D)$. Globally it is formulated in terms of doubled $2D$ torus fibrations over the spacetime with a monodromy given by $O(D,D,Z)$. In this note we discuss T-duality global aspects considered in both theories and we emphasize certain similarities between both approaches which could give some hints towards a deeper relationship between them.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا