Do you want to publish a course? Click here

Discovery of an au-scale excess in millimeter emission from the protoplanetary disk around TW Hya

121   0   0.0 ( 0 )
 Added by Takashi Tsukagoshi
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the detection of an excess in dust continuum emission at 233~GHz (1.3~mm in wavelength) in the protoplanetary disk around TW~Hya revealed through high-sensitivity observations at $sim$3~au resolution with the Atacama Large Millimeter/submillimeter Array (ALMA). The sensitivity of the 233~GHz image has been improved by a factor of 3 with regard to that of our previous cycle 3 observations. The overall structure is mostly axisymmetric, and there are apparent gaps at 25 and 41 au as previously reported. The most remarkable new finding is a few au-scale excess emission in the south-west part of the protoplanetary disk. The excess emission is located at 52 au from the disk center and is 1.5 times brighter than the surrounding protoplanetary disk at a significance of 12$sigma$. We performed a visibility fitting to the extracted emission after subtracting the axisymmetric protoplanetary disk emission and found that the inferred size and the total flux density of the excess emission are 4.4$times$1.0~au and 250~$mu$Jy, respectively. The dust mass of the excess emission corresponds to 0.03~$M_oplus$ if a dust temperature of 18~K is assumed. Since the excess emission can also be marginally identified in the Band 7 image at almost the same position, the feature is unlikely to be a background source. The excess emission can be explained by a dust clump accumulated in a small elongated vortex or a massive circumplanetary disk around a Neptune mass forming-planet.



rate research

Read More

For over a decade, the structure of the inner cavity in the transition disk of TW Hydrae has been a subject of debate. Modeling the disk with data obtained at different wavelengths has led to a variety of proposed disk structures. Rather than being inconsistent, the individual models might point to the different faces of physical processes going on in disks, such as dust growth and planet formation. Our aim is to investigate the structure of the transition disk again and to find to what extent we can reconcile apparent model differences. A large set of high-angular-resolution data was collected from near-infrared to centimeter wavelengths. We investigated the existing disk models and established a new self-consistent radiative-transfer model. A genetic fitting algorithm was used to automatize the parameter fitting. Simple disk models with a vertical inner rim and a radially homogeneous dust composition from small to large grains cannot reproduce the combined data set. Two modifications are applied to this simple disk model: (1) the inner rim is smoothed by exponentially decreasing the surface density in the inner ~3 AU, and (2) the largest grains (>100 um) are concentrated towards the inner disk region. Both properties can be linked to fundamental processes that determine the evolution of protoplanetary disks: the shaping by a possible companion and the different regimes of dust-grain growth, respectively. The full interferometric data set from near-infrared to centimeter wavelengths requires a revision of existing models for the TW Hya disk. We present a new model that incorporates the characteristic structures of previous models but deviates in two key aspects: it does not have a sharp edge at 4 AU, and the surface density of large grains differs from that of smaller grains. This is the first successful radiative-transfer-based model for a full set of interferometric data.
We present imaging observations at 1.3 millimeters of the debris disk surrounding the nearby M-type flare star AU Mic with beam size 3 arcsec (30 AU) from the Submillimeter Array. These data reveal a belt of thermal dust emission surrounding the star with the same edge-on geometry as the more extended scattered light disk detected at optical wavelengths. Simple modeling indicates a central radius of ~35 AU for the emission belt. This location is consistent with the reservoir of planetesimals previously invoked to explain the shape of the scattered light surface brightness profile through size-dependent dust dynamics. The identification of this belt further strengthens the kinship between the debris disks around AU Mic and its more massive sister star beta Pic, members of the same ~10 Myr-old moving group.
The protoplanetary disk around HL Tau is so far the youngest candidate of planet formation, and it is still embedded in a protostellar envelope with a size of thousands of au. In this work, we study the gas kinematics in the envelope and its possible influence on the embedded disk. We present our new ALMA cycle 3 observational results of HL Tau in the 13CO (2-1) and C18O (2-1) emission at resolutions of 0.8 (110 au), and we compare the observed velocity pattern with models of different kinds of gas motions. Both the 13CO and C18O emission lines show a central compact component with a size of 2 (280 au), which traces the protoplanetary disk. The disk is clearly resolved and shows a Keplerian motion, from which the protostellar mass of HL Tau is estimated to be 1.8+/-0.3 M$_odot$, assuming the inclination angle of the disk to be 47 deg from the plane of the sky. The 13CO emission shows two arc structures with sizes of 1000-2000 au and masses of 3E-3 M$_odot$ connected to the central disk. One is blueshifted and stretches from the northeast to the northwest, and the other is redshifted and stretches from the southwest to the southeast. We find that simple kinematical models of infalling and (counter-)rotating flattened envelopes cannot fully explain the observed velocity patterns in the arc structures. The gas kinematics of the arc structures can be better explained with three-dimensional infalling or outflowing motions. Nevertheless, the observed velocity in the northwestern part of the blueshifted arc structure is ~60-70% higher than the expected free-fall velocity. We discuss two possible origins of the arc structures: (1) infalling flows externally compressed by an expanding shell driven by XZ Tau and (2) outflowing gas clumps caused by gravitational instabilities in the protoplanetary disk around HL Tau.
We report the first detection of a gap and a ring in 336 GHz dust continuum emission from the protoplanetary disk around TW Hya, using the Atacama Large Millimeter/Submillimeter Array (ALMA). The gap and ring are located at around 25 and 41 au from the central star, respectively, and are associated with the CO snow line at ~30 au. The gap has a radial width of less than 15 au and a mass deficit of more than 23%, taking into account that the observations are limited to an angular resolution of ~15 au. In addition, the 13CO and C18O J = 3 - 2 lines show a decrement in CO line emission throughout the disk, down to ~10 au, indicating a freeze-out of gas-phase CO onto grain surfaces and possible subsequent surface reactions to form larger molecules. The observed gap could be caused by gravitational interaction between the disk gas and a planet with a mass less than super-Neptune (2M_{Neptune}), or could be the result of the destruction of large dust aggregates due to the sintering of CO ice.
94 - D.J. Wilner 2005
We present Very Large Array observations at 3.5 cm of the nearby young star TW Hya that show the emission is constant in time over weeks, months and years, and spatially resolved with peak brightness temperature ~10 K at ~0.25 (15 AU) resolution. These features are naturally explained if the emission mechanism at this wavelength is thermal emission from dust particles in the disk surrounding the star. To account quantitatively for the observations, we construct a self-consistent accretion disk model that incorporates a population of centimeter size particles that matches the long wavelength spectrum and spatial distribution. A substantial mass fraction of orbiting particles in the TW Hya disk must have agglomerated to centimeter size. These data provide the first clear indication that dust emission from protoplanetary disks may be observed at centimeter wavelengths, and that changes in the spectral slope of the dust emission may be detected, providing constraints on dust evolution and the planet formation process.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا